Stochastic Solitons in Birefringent Fibers for Biswas-Arshed Equation with Multiplicative White Noise via Ito Calculus by Modified Extended Mapping Method

被引:32
|
作者
Alhojilan, Yazid [1 ]
Ahmed, Hamdy M. [2 ]
Rabie, Wafaa B. [3 ,4 ]
机构
[1] Qassim Univ, Coll Sci, Dept Math, POB 6644, Buraydah 51452, Saudi Arabia
[2] El Shorouk Acad, Higher Inst Engn, Dept Phys & Engn Math, El Shorouk City 11837, Egypt
[3] Higher Inst Engn & Technol, Dept Basic Sci, Menoufia 32821, Egypt
[4] Higher Inst Engn & Technol, Dept Phys & Engn Math, Tanta 34517, Egypt
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
stochastic solitons; birefringent fibers; stochastic periodic wave solutions; Biswas-Arshad equation; white noise; modified extended mapping method; OPTICAL SOLITONS; NONLINEARITY;
D O I
10.3390/sym15010207
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stochastic partial differential equations have wide applications in various fields of science and engineering. This paper addresses the optical stochastic solitons and other exact stochastic solutions through birefringent fibers for the Biswas-Arshed equation with multiplicative white noise using the modified extended mapping method. This model contains many kinds of soliton solutions, which are always symmetric or anti-symmetric in space. Stochastic bright soliton solutions, stochastic dark soliton solutions, stochastic combo bright-dark soliton solutions, stochastic combo singular-bright soliton solutions, stochastic singular soliton solutions, stochastic periodic solutions, stochastic rational solutions, stochastic Weierstrass elliptic doubly periodic solutions, and stochastic Jacobi elliptic function solutions are extracted. The constraints on the parameters are considered to guarantee the existence of these stochastic solutions. Furthermore, some of the selected solutions are described graphically to demonstrate the physical nature of the obtained solutions.
引用
收藏
页数:21
相关论文
共 41 条
  • [1] Optical solitons in birefringent fibers with Biswas-Arshed equation having multiplicative noise via Ito calculus using two integration algorithms
    Zayed, Elsayed M. E.
    Shohib, Reham M. A.
    Alngar, Mohamed E. M.
    [J]. OPTIK, 2022, 262
  • [2] Extraction of optical solitons in birefringent fibers for Biswas-Arshed equation via extended trial equation method
    Tahir, Muhammad
    Awan, Aziz Ullah
    Abro, Kashif Ali
    [J]. NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2021, 10 (01): : 146 - 158
  • [3] Optical solitons for Biswas-Arshed equation with multiplicative noise via Ito calculus using three integration algorithms
    Zayed, Elsayed M. E.
    Shohib, Reham M. A.
    Alngar, Mohamed E. M.
    Gepreel, Khaled A.
    Nofal, Taher A.
    Yildirim, Yakup
    [J]. OPTIK, 2022, 258
  • [4] Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise
    Rehman, Hamood Ur
    Awan, Aziz Ullah
    Eldin, Sayed M.
    Iqbal, Ifrah
    [J]. AIMS MATHEMATICS, 2023, 8 (09): : 21606 - 21621
  • [5] Optical solitons of Biswas-Arshed equation in birefringent fibers using extended direct algebraic method
    Rehman, Hamood Ur
    Ullah, Naeem
    Imran, M. A.
    [J]. OPTIK, 2021, 226
  • [6] Optical solitons of Biswas-Arshed equation in birefringent fibers using improved modified extended tanh-function method
    Darwish, Adel
    Ahmed, Hamdy M.
    Arnous, Ahmed H.
    Shehab, Mohammed F.
    [J]. OPTIK, 2021, 227
  • [7] Optical solitons of Biswas-Arshed equation in birefringent fibers by trial equation technique
    Yildirim, Yakup
    [J]. OPTIK, 2019, 182 : 810 - 820
  • [8] Optical solitons in birefringent fibers with Biswas-Arshed equation by sine-Gordon equation method
    Yildirim, Yakup
    [J]. OPTIK, 2021, 227
  • [9] Optical solitons to Biswas-Arshed model in birefringent fibers using modified simple equation architecture
    Yildirim, Yakup
    [J]. OPTIK, 2019, 182 : 1149 - 1162
  • [10] Singular solitons of Biswas-Arshed equation by the modified simple equation method
    Chen, Chaodong
    [J]. OPTIK, 2019, 184 : 412 - 420