Efficient Fine-Tuning Large Language Models for Knowledge-Aware Response Planning

被引:3
|
作者
Minh Nguyen [1 ]
Kishan, K. C. [2 ]
Toan Nguyen [2 ]
Chadha, Ankit [2 ]
Thuy Vu [2 ]
机构
[1] Univ Oregon, Dept Comp Sci, Eugene, OR USA
[2] Amazon Alexa AI, Palo Alto, CA 94301 USA
关键词
Knowledge-Aware Response Planning; Question Answering; Large Language Models; Fine-tuning;
D O I
10.1007/978-3-031-43415-0_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large Language Models (LLMs) have shown impressive emergent language capabilities, especially in applications with high ambiguity, such as language reasoning and knowledge consolidation. However, previous work explores the use of LLMs for acquiring information using either parametric or external knowledge, which might lead to serious issues such as hallucination. Toward solving these issues, we present a novel approach of knowledge-aware response planning (KARP) and propose a novel framework that employs (i) a knowledge retriever to obtain relevant information from web documents or databases for a given user query, and (ii) a robust fine-tuning strategy for LLMs to exploit the retrieved external knowledge for planning a final response. Experimental results show that our proposed framework can provide natural, concise answers for open-domain questions with high accuracy.
引用
收藏
页码:593 / 611
页数:19
相关论文
共 50 条
  • [1] Parameter-efficient fine-tuning of large language models using semantic knowledge tuning
    Prottasha, Nusrat Jahan
    Mahmud, Asif
    Sobuj, Md. Shohanur Islam
    Bhat, Prakash
    Kowsher, Md
    Yousefi, Niloofar
    Garibay, Ozlem Ozmen
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] OWQ: Outlier-Aware Weight Quantization for Efficient Fine-Tuning and Inference of Large Language Models
    Lee, Changhun
    Jin, Jungyu
    Kim, Taesu
    Kim, Hyungjun
    Park, Eunhyeok
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13355 - 13364
  • [3] Knowledge-Aware Code Generation with Large Language Models
    Huang, Tao
    Sun, Zhihong
    Jin, Zhi
    Li, Ge
    Lyu, Chen
    PROCEEDINGS 2024 32ND IEEE/ACM INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION, ICPC 2024, 2024, : 52 - 63
  • [4] Personalized Large Language Models through Parameter Efficient Fine-Tuning Techniques
    Braga, Marco
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 3076 - 3076
  • [5] Knowledge-Aware Prompt Tuning for Generalizable Vision-Language Models
    Kan, Baoshuo
    Wang, Teng
    Lu, Wenpeng
    Zhen, Xiantong
    Guan, Weili
    Zheng, Feng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 15624 - 15634
  • [6] Phased Instruction Fine-Tuning for Large Language Models
    Pang, Wei
    Zhou, Chuan
    Zhou, Xiao-Hua
    Wang, Xiaojie
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 5735 - 5748
  • [7] HackMentor: Fine-Tuning Large Language Models for Cybersecurity
    Zhang, Jie
    Wen, Hui
    Deng, Liting
    Xin, Mingfeng
    Li, Zhi
    Li, Lun
    Zhu, Hongsong
    Sun, Limin
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 452 - 461
  • [8] How fine can fine-tuning be? Learning efficient language models
    Radiya-Dixit, Evani
    Wang, Xin
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2435 - 2442
  • [9] Characterizing Communication in Distributed Parameter-Efficient Fine-Tuning for Large Language Models
    Alnaasan, Nawras
    Huang, Horng-Ruey
    Shafi, Aamir
    Subramoni, Hari
    Panda, Dhabaleswar K.
    2024 IEEE SYMPOSIUM ON HIGH-PERFORMANCE INTERCONNECTS, HOTI 2024, 2024, : 11 - 19
  • [10] Demystifying Instruction Mixing for Fine-tuning Large Language Models
    Wang, Renxi
    Li, Haonan
    Wu, Minghao
    Wang, Yuxia
    Han, Xudong
    Zhang, Chiyu
    Baldwin, Timothy
    PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 4: STUDENT RESEARCH WORKSHOP, 2024, : 86 - 93