Improving the picking efficiency of a cold warehouse to avoid temperature abuse

被引:2
|
作者
Benaglia, Marco Fabio [1 ]
Chen, Mei-Hui [2 ]
Lu, Shih-Hao [3 ]
Tsai, Kune-Muh [4 ]
Hung, Shih-Han [4 ]
机构
[1] Yuan Ze Univ, Coll Management, Discipline Int Business, Taoyuan, Taiwan
[2] Chia Nan Univ Pharm & Sci, Rende, Taiwan
[3] Natl Taiwan Univ Sci & Technol, Dept Business Adm, Taipei, Taiwan
[4] Natl Kaohsiung Univ Sci & Technol, Dept Logist Management, Kaohsiung, Taiwan
关键词
Cold chain; Temperature abuse; Food loss; Storage location assignment; Order picking; MQA-1; algorithm; CLASS-BASED STORAGE; ORDER-PICKING; ASSIGNMENT STRATEGY; TRAVEL DISTANCE; LOCATION; POLICIES; CHAIN; PERFORMANCE; MODEL; MANAGEMENT;
D O I
10.1108/IJLM-01-2023-0044
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
PurposeThis research investigates how to optimize storage location assignment to decrease the order picking time and the waiting time of orders in the staging area of low-temperature logistics centers, with the goal of reducing food loss caused by temperature abuse.Design/methodology/approachThe authors applied ABC clustering to the products in a simulated database of historical orders modeled after the actual order pattern of a large cold logistics company; then, the authors mined the association rules and calculated the sales volume correlation indices of the ordered products. Finally, the authors generated three different simulated order databases to compare order picking time and waiting time of orders in the staging area under eight different storage location assignment strategies.FindingsAll the eight proposed storage location assignment strategies significantly improve the order picking time (by up to 8%) and the waiting time of orders in the staging area (by up to 22%) compared with random placement.Research limitations/implicationsThe results of this research are based on a case study and simulated data, which implies that, if the best performing strategies are applied to different environments, the extent of the improvements may vary. Additionally, the authors only considered specific settings in terms of order picker routing, zoning and batching: other settings may lead to different results.Practical implicationsA storage location assignment strategy that adopts dispersion and takes into consideration ABC clustering and shipping frequency provides the best performance in minimizing order picker's travel distance, order picking time, and waiting time of orders in the staging area. Other strategies may be a better fit if the company's objectives differ.Originality/valuePrevious research on optimal storage location assignment rarely considered item association rules based on sales volume correlation. This study combines such rules with several storage planning strategies, ABC clustering, and two warehouse layouts; then, it evaluates their performance compared to the random placement, to find which one minimizes the order picking time and the order waiting time in the staging area, with a 30-min time limit to preserve the integrity of the cold chain. Order picking under these conditions was rarely studied before, because they may be irrelevant when dealing with temperature-insensitive items but become critical in cold warehouses to prevent temperature abuse.
引用
收藏
页码:1434 / 1464
页数:31
相关论文
共 50 条
  • [1] The optimum design of a warehouse system on order picking efficiency
    Hsieh, LF
    Tsai, LH
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2006, 28 (5-6): : 626 - 637
  • [2] The optimum design of a warehouse system on order picking efficiency
    Ling-feng Hsieh
    Lihui Tsai
    [J]. The International Journal of Advanced Manufacturing Technology, 2006, 28 : 626 - 637
  • [3] The effect of warehouse cross aisles on order picking efficiency
    Vaughan, TS
    Petersen, CG
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 1999, 37 (04) : 881 - 897
  • [4] The effect of warehouse cross aisles on order picking efficiency
    Vaughan, TS
    Petersen, CG
    [J]. DECISION SCIENCES INSTITUTE, 1997 ANNUAL MEETING, PROCEEDINGS, VOLS 1-3, 1997, : 1135 - 1137
  • [5] The optimum design of a warehouse system on order picking efficiency
    Hsieh, Ling-Feng
    Tsai, Lihui
    [J]. International Journal of Advanced Manufacturing Technology, 2006, 28 (5-6): : 626 - 637
  • [6] USING MAN-TO-PART PICKING FOR WAREHOUSE EFFICIENCY.
    Anon
    [J]. Modern Materials Handling, 1986, 41 (04) : 21 - 25
  • [7] Storage and Order Picking Process Design for Perishable Foods in a Cold Warehouse
    Guntez, Bensu
    Isguzerer, Gizem
    Gusec, Cagla
    Ozen, Merve
    Paldrak, Mert
    Ekren, Banu Yetkin
    [J]. DIGITIZING PRODUCTION SYSTEMS, ISPR2021, 2022, : 800 - 811
  • [8] Improving order-picking response time at Ankor's warehouse
    Dekker, R
    de Koster, MBM
    Roodbergen, KJ
    van Kalleveen, H
    [J]. INTERFACES, 2004, 34 (04) : 303 - 312
  • [9] The impact of picker’s factors on the order picking efficiency in unmanned warehouse
    Wu Z.
    Lan Y.
    Qin H.
    [J]. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2023, 43 (04): : 1192 - 1202
  • [10] Order-picking methods: Improving order-picking efficiency
    Dukic, Goran
    Oluic, Cedomir
    [J]. ICIL 2005: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INDUSTRIAL LOGISTICS, 2005, : 103 - 111