A Hybrid Short-Term Load Forecasting Approach for Individual Residential Customer

被引:17
|
作者
Lin, Xin [1 ]
Zamora, Ramon [1 ]
Baguley, Craig A. [1 ]
Srivastava, Anurag K. [2 ]
机构
[1] Auckland Univ Technol, Elect & Elect Engn Dept, Auckland 1142, New Zealand
[2] West Virginia Univ, Comp Sci & Elect Engn Dept, Morgantown, WV 26506 USA
关键词
Load modeling; Predictive models; Atmospheric modeling; Data models; Support vector machines; Neural networks; Genetic algorithms; Bayesian algorithm; Bi-LSTM; BPNN; genetic algorithm; GRNN; hybrid method; short-term residential load forecasting; SVM; thermal dynamic model; trimmed algorithm; ELECTRICITY CONSUMPTION; NEURAL-NETWORK; MODEL; PREDICTION; PERFORMANCE; ALGORITHMS;
D O I
10.1109/TPWRD.2022.3178822
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a hybrid method (HM) to improve the accuracy of short-term individual residential load forecasting. The HM includes an ensemble model (EM), deep ensemble model (DEM), and thermal dynamic model expressed by resistance-capacitance (RC). The EM consists of three predictors of support vector machine (SVM), back propagation neural network (BPNN), and generalized regression neural network (GRNN). The genetic algorithm (GA) is used to optimize SVM and BPNN to enhance their performance. The DEM includes multiple bi-directional long-short term memory (Bi-LSTM) networks. The Bayesian algorithm (BA) is used to optimize the hyperparameters of the Bi-LSTM. The outputs of individual predictors are aggregated using an optimal trimmed algorithm. At first, the total load is separated into the heater and air conditioning (HAC), and non-HAC loads. Then, the RC model is presented to predict the indoor temperature, which integrates outdoor weather and less HAC historical data as the input of the EM to forecast the HAC load. After that, non-HAC loads are further divided into electric lighting and other loads. A daylight equation is used to calculate the illuminance, which is combined with less lighting historical data as the input of DEM to predict electric lights usage. Then, other loads are captured by DEM through less historical data. Finally, the total load is obtained by combining the predicted HAC and non-HAC loads. The datasets from the UMass Smart Microgrid and Flexhouse projects are used to test the proposed method. The comparison with existing models proves that the presented model can provide accurate short-term individual load forecasting.
引用
收藏
页码:26 / 37
页数:12
相关论文
共 50 条
  • [1] A Novel CNN-GRU-Based Hybrid Approach for Short-Term Residential Load Forecasting
    Sajjad, Muhammad
    Khan, Zulfiqar Ahmad
    Ullah, Amin
    Hussain, Tanveer
    Ullah, Waseem
    Lee, Mi Young
    Baik, Sung Wook
    IEEE ACCESS, 2020, 8 : 143759 - 143768
  • [2] An Accurate Hybrid Approach for Electric Short-Term Load Forecasting
    Sina, Alireza
    Kaur, Damanjeet
    IETE JOURNAL OF RESEARCH, 2023, 69 (05) : 2727 - 2742
  • [3] Short-Term Load Forecasting on Individual Consumers
    Jales Melo, Joao Victor
    Soares Lira, George Rossany
    Costa, Edson Guedes
    Leite Neto, Antonio F.
    Oliveira, Iago B.
    ENERGIES, 2022, 15 (16)
  • [4] Federated Learning for Short-Term Residential Load Forecasting
    Briggs, Christopher
    Fan, Zhong
    Andras, Peter
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2022, 9 : 573 - 583
  • [5] A hybrid intelligent algorithm based short-term load forecasting approach
    Hooshmand, Rahmat-Allah
    Amooshahi, Habib
    Parastegari, Moein
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 45 (01) : 313 - 324
  • [6] A hybrid kohonen-based approach for short-term load forecasting
    Gleeson, Brian
    Kechadi, Tahar
    3RD INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS, AND APPLICAT/4TH INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 1, 2006, : 176 - 180
  • [7] A Data-driven Hybrid Optimization Model for Short-term Residential Load Forecasting
    Cao, Xiu
    Dong, Shuanshuan
    Wu, Zhenhao
    Jing, Yinan
    CIT/IUCC/DASC/PICOM 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY - UBIQUITOUS COMPUTING AND COMMUNICATIONS - DEPENDABLE, AUTONOMIC AND SECURE COMPUTING - PERVASIVE INTELLIGENCE AND COMPUTING, 2015, : 283 - 287
  • [8] A dynamic ensemble method for residential short-term load forecasting
    Yu Yang
    Fan Jinfu
    Wang Zhongjie
    Zhu Zheng
    Xu Yukun
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 63 : 75 - 88
  • [9] Research in residential electricity characteristics and short-term load forecasting
    Feng, H. (fenghaixiashiwo@163.com), 1600, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11):
  • [10] Short-term load forecasting in non-residential Buildings
    Penya, Yoseba K.
    Borges, Cruz E.
    Fernandez, Ivan
    IEEE AFRICON 2011, 2011,