REDUCTION OF SYMPLECTIC GROUPOIDS AND QUOTIENTS OF QUASI-POISSON MANIFOLDS

被引:0
|
作者
Alvarez, Daniel [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Dept Matemat, Fac Ciencias, Mexico City 04510, DF, Mexico
关键词
DOUBLE LIE ALGEBROIDS; INTEGRABILITY; INTEGRATION;
D O I
10.1007/s00031-022-09700-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the integrability of quotients of quasi-Poisson manifolds. Our approach allows us to put several classical results about the integrability of Poisson quotients in a common framework. By categorifying one of the already known methods of reducing symplectic groupoids we also describe double symplectic groupoids, which integrate the recently introduced Poisson groupoid structures on gauge groupoids.
引用
收藏
页码:1357 / 1374
页数:18
相关论文
共 50 条
  • [1] REDUCTION OF SYMPLECTIC GROUPOIDS AND QUOTIENTS OF QUASI-POISSON MANIFOLDS
    DANIEL ÁLVAREZ
    [J]. Transformation Groups, 2023, 28 : 1357 - 1374
  • [2] Quasi-Poisson manifolds
    Alekseev, A
    Kosmann-Schwarzbach, Y
    Meinrenken, E
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (01): : 3 - 29
  • [3] SYMPLECTIC GROUPOIDS AND POISSON MANIFOLDS
    WEINSTEIN, A
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 16 (01) : 101 - 104
  • [4] Universal lifting theorem and quasi-Poisson groupoids
    Iglesias-Ponte, David
    Laurent-Gengoux, Camille
    Xu, Ping
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (03) : 681 - 731
  • [5] On quasi-Poisson homogeneous spaces of quasi-Poisson Lie groups
    Karolinsky, E
    Muzykin, K
    [J]. JOURNAL OF LIE THEORY, 2004, 14 (02) : 543 - 554
  • [6] Symplectic Groupoids of Log Symplectic Manifolds
    Gualtieri, Marco
    Li, Songhao
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (11) : 3022 - 3074
  • [7] On symplectic double groupoids and the duality of Poisson groupoids
    Mackenzie, KCH
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (04) : 435 - 456
  • [8] Symplectic groupoids and Poisson electrodynamics
    Kupriyanov, Vladislav G.
    Sharapov, Alexey A.
    Szabo, Richard J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [9] Symplectic groupoids for cluster manifolds
    Li, Songhao
    Rupel, Dylan
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2020, 154
  • [10] Symplectic groupoids for Poisson integrators
    Cosserat, Oscar
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 186