Efficient and stable perovskite solar cells with regulated depletion region

被引:45
|
作者
Shen, Zhichao [1 ]
Han, Qifeng [1 ]
Luo, Xinhui [1 ]
Shen, Yangzi [1 ]
Wang, Yanbo [1 ]
Yuan, Yongbo [2 ]
Zhang, Yiqiang [3 ]
Yang, Yang [4 ]
Han, Liyuan [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai, Peoples R China
[2] Cent South Univ, Sch Phys & Elect, Hunan Key Lab Supermicrostructure & Ultrafast Proc, Changsha, Peoples R China
[3] Zhengzhou Univ, Henan Inst Adv Technol, Sch Mat Sci & Engn, Zhengzhou, Peoples R China
[4] Univ Calif Los Angeles, Calif Nanosyst Inst, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金;
关键词
DEGRADATION; MIGRATION; TRANSPORT; LIGHT;
D O I
10.1038/s41566-024-01383-5
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Irreversible ion migration from the perovskite layer to the charge transport layer and metal electrodes causes irreversible efficiency loss in perovskite solar cells. Confining the mobile ions within the perovskite layer is a promising strategy to improve the long-term operational stability of solar cells. Here we inhibit the migration of iodide ions out of the perovskite under light illumination by creating a depletion region inside the perovskite layer. Precise control of the doping depth induces an electric field within the perovskite that counteracts ion migration while enhancing carrier separation. Our devices exhibit a certified power conversion efficiency of 24.6% and maintain over 88% of the initial efficiency after 1,920 h of continuous illumination under maximum power point conditions (65 degrees C in ambient air, following the ISOS-L-2 protocol). The power conversion efficiency returns to more than 94% of its initial value after overnight recovery. When operating under repeated 12 h light on/off cycles for over 10,000 h (solar simulator at 65 degrees C and ambient air, following the ISOS-LC-2 protocol), the efficiency loss is less than 2%. We expect this method to open up new and effective avenues towards enhancing the long-term stability of high-performance perovskite photovoltaics. Controlling the doping depth in perovskites allows the creation of a depletion region that inhibits the migration of iodide ions under illumination. Solar cells exhibit a power conversion efficiency of 24.6% and maintain 88% of the initial efficiency after 1,900 h of continuous operation.
引用
收藏
页码:450 / 457
页数:8
相关论文
共 50 条
  • [1] Efficient and stable perovskite solar cells with regulated depletion region
    Zhichao Shen
    Qifeng Han
    Xinhui Luo
    Yangzi Shen
    Yanbo Wang
    Yongbo Yuan
    Yiqiang Zhang
    Yang Yang
    Liyuan Han
    Nature Photonics, 2024, 18 : 450 - 457
  • [2] Regulating depletion region enables highly efficient and stable perovskite solar cells
    Wang, Chun-Yun
    Saliba, Michael
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (09) : 2783 - 2784
  • [3] Regulating depletion region enables highly efficient and stable perovskite solar cells
    ChunYun Wang
    Michael Saliba
    ScienceChina(Chemistry), 2024, 67 (09) : 2783 - 2784
  • [4] Efficient and stable of perovskite solar cells
    Jiang, Qi
    Zhang, Xingwang
    You, Jingbi
    2016 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2016,
  • [5] Hexylammonium Acetate-Regulated Buried Interface for Efficient and Stable Perovskite Solar Cells
    Hu, Ruiyuan
    Wang, Taomiao
    Wang, Fei
    Li, Yongjun
    Sun, Yonggui
    Liang, Xiao
    Zhou, Xianfang
    Yang, Guo
    Li, Qiannan
    Zhang, Fan
    Zhu, Quanyao
    Li, Xing'ao
    Hu, Hanlin
    NANOMATERIALS, 2024, 14 (08)
  • [6] Towards Stable, 30% Efficient Perovskite Solar Cells
    Park, Nam-Gyu
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 41 (14) : 3657 - 3668
  • [7] A pressure process for efficient and stable perovskite solar cells
    Luo, Junsheng
    Xia, Jianxing
    Yang, Hua
    Sun, Chunlin
    Li, Ning
    Malik, Haseeb Ashraf
    Shu, Hongyu
    Wan, Zhongquan
    Zhang, Haoli
    Brabec, Christoph J.
    Jia, Chunyang
    NANO ENERGY, 2020, 77
  • [8] Precursor engineering for efficient and stable perovskite solar cells
    Luan, Fuyuan
    Li, Haiyan
    Gong, Shuiping
    Chen, Xinyu
    Shou, Chunhui
    Wu, Zihua
    Xie, Huaqing
    Yang, Songwang
    NANOTECHNOLOGY, 2023, 34 (05)
  • [9] The Rise of Highly Efficient and Stable Perovskite Solar Cells
    Graetzel, Michael
    ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (03) : 487 - 491
  • [10] Efficient and Stable Perovskite Solar Cells by Tailoring of Interfaces
    Xia, Jianxing
    Sohail, Muhammad
    Nazeeruddin, Mohammad Khaja
    ADVANCED MATERIALS, 2023, 35 (31)