Shortcut-to-Adiabatic Controlled-Phase Gate in Rydberg Atoms

被引:5
|
作者
Bosch, Luis S. Yague [1 ]
Ehret, Tim [1 ,7 ]
Petiziol, Francesco [2 ]
Arimondo, Ennio [3 ,4 ]
Wimberger, Sandro [5 ,6 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 12, D-69120 Heidelberg, Germany
[2] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
[3] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[4] Univ Pisa, Ist Nazionale Ott, Consiglio Nazionale Ric, Largo Pontecorvo 3, I-56127 Pisa, Italy
[5] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Parco Area Sci 7-A, I-43124 Parma, Italy
[6] INFN, Sez Milano Bicocca, Grp Collegato Parma, Parco Area Sci 7-A, I-43124 Parma, Italy
[7] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
关键词
quantum control; quantum optics; Rydberg atoms; superadiabatic methods; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; QUANTUM; DYNAMICS; PHOTONS; QUTIP;
D O I
10.1002/andp.202300275
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A shortcut-to-adiabatic protocol for the realization of a fast and high-fidelity controlled-phase gate in Rydberg atoms is developed. The adiabatic state transfer, driven in the high-blockade limit, is sped up by compensating nonadiabatic transitions via oscillating fields that mimic a counterdiabatic Hamiltonian. High fidelities are obtained in wide parameter regions. The implementation of the bare effective counterdiabatic field, without original adiabatic pulses, enables to bypass gate errors produced by the accumulation of blockade-dependent dynamical phases, making the protocol efficient also at low blockade values. As an application toward quantum algorithms, how the fidelity of the gate impacts the efficiency of a minimal quantum-error correction circuit is analyzed. Quantum gates are the backbone of digital quantum computing. A shortcut-to-adiabatic protocol is presented for the realization of controlled-phase gate in Rydberg atoms. The adiabatic state transfer for the gate is accelerated by compensating nonadiabatic transitions via oscillating fields. High fidelities and fast operation times are obtained, and an application to a minimal quantum-error correction circuit is analyzed. image
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Error budgeting for a controlled-phase gate with strontium-88 Rydberg atoms
    Pagano, Alice
    Weber, Sebastian
    Jaschke, Daniel
    Pfau, Tilman
    Meinert, Florian
    Montangero, Simone
    Buechler, Hans Peter
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [2] Implementation of an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms
    Mueller, Matthias M.
    Murphy, Michael
    Montangero, Simone
    Calarco, Tommaso
    Grangier, Philippe
    Browaeys, Antoine
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [3] Single Temporal-Pulse-Modulated Parameterized Controlled-Phase Gate for Rydberg Atoms
    Li, X. X.
    Shao, X. Q.
    Li, Weibin
    PHYSICAL REVIEW APPLIED, 2022, 18 (04)
  • [4] Shortcuts to adiabatic passage for multiqubit controlled-phase gate
    Liang, Yan
    Wu, Qi-Cheng
    Su, Shi-Lei
    Ji, Xin
    Zhang, Shou
    PHYSICAL REVIEW A, 2015, 91 (03):
  • [5] Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms
    Yan-Xiong Du
    Zhen-Tao Liang
    Yi-Chao Li
    Xian-Xian Yue
    Qing-Xian Lv
    Wei Huang
    Xi Chen
    Hui Yan
    Shi-Liang Zhu
    Nature Communications, 7
  • [6] Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms
    Du, Yan-Xiong
    Liang, Zhen-Tao
    Li, Yi-Chao
    Yue, Xian-Xian
    Lv, Qing-Xian
    Huang, Wei
    Chen, Xi
    Yan, Hui
    Zhu, Shi-Liang
    NATURE COMMUNICATIONS, 2016, 7
  • [8] Rydberg quantum controlled-phase gate with one control and multiple target qubits
    Su, S. L.
    CHINESE PHYSICS B, 2018, 27 (11)
  • [9] Implementing a neutral-atom controlled-phase gate with a single Rydberg pulse
    Han, Rui
    Ng, Hui Khoon
    Englert, Berthold-Georg
    EPL, 2016, 113 (04)
  • [10] One-step construction of the multiple-qubit Rydberg controlled-PHASE gate
    Su, S. L.
    Shen, H. Z.
    Liang, Erjun
    Zhang, Shou
    PHYSICAL REVIEW A, 2018, 98 (03)