Comparative transcriptome analysis reveals an insight into the candidate genes involved in anthocyanin and scent volatiles biosynthesis in colour changing flowers of Combretum indicum

被引:4
|
作者
Ghissing, U. [1 ]
Kutty, N. N. [1 ,2 ]
Bimolata, W. [1 ]
Samanta, T. [3 ]
Mitra, A. [1 ]
机构
[1] Indian Inst Technol Kharagpur, Agr & Food Engn Dept, Nat Prod Biotechnol Grp, Kharagpur 721302, W Bengal, India
[2] Dr Vishwanath Karad MIT World Peace Univ, Sch Biol, Pune, Maharashtra, India
[3] Indian Inst Technol Mandi, Sch Basic Sci, BioX Ctr, Mandi, Himachal Prades, India
关键词
Anthocyanin; colour change; Combretum indicum; de novo transcriptomics; floral volatiles; TERPENE SYNTHASE GENE; S-TRANSFERASE GENE; QUISQUALIS-INDICA; EXPRESSION; INTERACTS; HY5;
D O I
10.1111/plb.13481
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Combretum indicum is a widely cultivated ornamental species displaying the distinct phenomenon of floral colour change. Flowers display a gradual colour change from white to red, attributed to increased cyanidin 3-O glucoside in petal tissues. The differently coloured flowers also emanate a complex blend of VOCs with trans-linalool oxide (furanoid) as the major compound in the emission profile. To understand molecular mechanisms regulating floral colour shifts and scent biosynthesis, we performed Illumina transcriptome sequencing, including de novo assembly and functional annotation, for the two stages of floral maturation (white and red). Homology analysis with functional classification identified 84 and 42 candidate genes associated with pigment and scent biosynthesis, respectively. Genes encoding transcription factors, such as MYB, ERF, WD40, WRKY, NAC, bHLH and bZIP, that play critical roles in regulating specialized metabolism were also identified in the transcriptome data. Differences in expression of genes were consistent with accumulation patterns of anthocyanins in the two different flower colours. A clear upregulation of flavonoid biosynthesis genes in red flower tissue is associated with increased pigment content. RT-qPCR-based expression analyses gave results consistent with the RNA-Seq data, suggesting the sequencing data are consistent and reliable. This study presents the first report of genetic information for C. indicum. Gene sequences generated from RNA-Seq, along with candidate genes identified by pathway mapping and their expression profiles, provide a valuable resource for subsequent studies towards molecular understanding of specialized metabolism in C. indicum flowers.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 50 条
  • [1] Transcriptome Analysis Reveals Candidate Genes Involved in Anthocyanin Biosynthesis in Flowers of the Pagoda Tree (Sophora japonica L.)
    Guo, Liping
    Teixeira da Silva, Jaime A.
    Pan, Qinghua
    Liao, Ting
    Yu, Xiaonan
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (01) : 1 - 14
  • [2] Transcriptome Analysis Reveals Candidate Genes Involved in Anthocyanin Biosynthesis in Flowers of the Pagoda Tree (Sophora japonica L.)
    Liping Guo
    Jaime A. Teixeira da Silva
    Qinghua Pan
    Ting Liao
    Xiaonan Yu
    Journal of Plant Growth Regulation, 2022, 41 : 1 - 14
  • [3] Comparative transcriptome analysis reveals candidate genes involved in anthocyanin biosynthesis in sweetpotato (Ipomoea batatas L.)
    Li, Qiang
    Kou, Meng
    Li, Chen
    Zhang, Yun-Gang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 158 : 508 - 517
  • [4] Integrated metabolome and transcriptome analyses of anthocyanin biosynthesis reveal key candidate genes involved in colour variation of Scutellaria baicalensis flowers
    Fengdan Guo
    Renwei Guan
    Xinru Sun
    Cuicui Zhang
    Chenggang Shan
    Mengyu Liu
    Ning Cui
    Ping Wang
    Huibin Lin
    BMC Plant Biology, 23
  • [5] Integrated metabolome and transcriptome analyses of anthocyanin biosynthesis reveal key candidate genes involved in colour variation of Scutellaria baicalensis flowers
    Guo, Fengdan
    Guan, Renwei
    Sun, Xinru
    Zhang, Cuicui
    Shan, Chenggang
    Liu, Mengyu
    Cui, Ning
    Wang, Ping
    Lin, Huibin
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [6] Comparative Transcriptome Analysis Reveals Candidate Genes Involved in Isoquinoline Alkaloid Biosynthesis in Stephania tetrandra
    Zhang, Yangyang
    Kang, Yun
    Xie, Hui
    Wang, Yaqin
    Li, Yaoting
    Huang, Jianming
    PLANTA MEDICA, 2020, 86 (17) : 1258 - 1268
  • [7] Transcriptome analysis reveals novel genes involved in anthocyanin biosynthesis in the flesh of peach
    Cao, Ke
    Ding, Tiyu
    Mao, Dongmin
    Zhu, Gengrui
    Fang, Weichao
    Chen, Changwen
    Wang, Xinwei
    Wang, Lirong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 123 : 94 - 102
  • [8] Transcriptome analysis of Abeliophyllum distichum NAKAI reveals potential molecular markers and candidate genes involved in anthocyanin biosynthesis pathway
    Choi, J. H.
    Kim, H.
    Hyun, T. K.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2018, 116 : 34 - 41
  • [9] Transcriptome Sequencing and Analysis Reveal Differentially Expressed Genes Involved in Anthocyanin Biosynthesis in Lantana Flowers
    Parrish, S. Brooks
    Paudel, Dev
    Deng, Zhanao
    HORTSCIENCE, 2022, 57 (09) : S185 - S185
  • [10] Transcriptome Analysis Reveals Candidate Genes Related to Anthocyanin Biosynthesis in Different Carrot Genotypes and Tissues
    Meng, Geng
    Clausen, Sabine K.
    Rasmussen, Soren K.
    PLANTS-BASEL, 2020, 9 (03):