An Efficient Intrusion Detection System to Combat Cyber Threats using a Deep Neural Network Model

被引:0
|
作者
Ramaiah, Mangayarkarasi [1 ]
Vanmathi, C. [1 ]
Khan, Mohammad Zubair [2 ]
Vanitha, M. [1 ]
Deepa, M. [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci Engn & Informat Syst, Vellore 632014, Tamilnadu, India
[2] Taibah Univ, Coll Comp Sci & Engn, Medina 41477, Saudi Arabia
关键词
artificial deep neural network; correlation tool; DDoS; machine learning; network intrusion detection system; RF-score; XGBoost-score; LEARNING-METHODS; SECURITY; IOT;
D O I
10.5614/itbj.ict.res.appl.2023.17.3.2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The proliferation of Internet of Things (IoT) solutions has led to a significant increase in cyber-attacks targeting IoT networks. Securing networks and especially wireless IoT networks against these attacks has become a crucial but challenging task for organizations. Therefore, ensuring the security of wireless IoT networks is of the utmost importance in today's world. Among various solutions for detecting intruders, there is a growing demand for more effective techniques. This paper introduces a network intrusion detection system (NIDS) based on a deep neural network that utilizes network data features selected through the bagging and boosting methods. The presented NIDS implements both binary and multiclass attack detection models and was evaluated using the KDDCUP 99 and CICDDoS datasets. The experimental results demonstrated that the presented NIDS achieved an impressive accuracy rate of 99.4% while using a minimal number of features. This high level of accuracy makes the presented IDS a valuable tool.
引用
收藏
页码:292 / 315
页数:24
相关论文
共 50 条
  • [1] Using Convolutional Neural Networks to Network Intrusion Detection for Cyber Threats
    Lin, Wen-Hui
    Lin, Hsiao-Chung
    Wang, Ping
    Wu, Bao-Hua
    Tsai, Jeng-Ying
    [J]. PROCEEDINGS OF 4TH IEEE INTERNATIONAL CONFERENCE ON APPLIED SYSTEM INNOVATION 2018 ( IEEE ICASI 2018 ), 2018, : 1107 - 1110
  • [2] Deep residual convolutional neural Network: An efficient technique for intrusion detection system
    Kumar, Gunupudi Sai Chaitanya
    Kumar, Reddi Kiran
    Kumar, Kuricheti Parish Venkata
    Sai, Nallagatla Raghavendra
    Brahmaiah, Madamachi
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [3] An intrusion detection system using optimized deep neural network architecture
    Ramaiah, Mangayarkarasi
    Chandrasekaran, Vanmathi
    Ravi, Vinayakumar
    Kumar, Neeraj
    [J]. TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2021, 32 (04):
  • [4] An intelligent and efficient network intrusion detection system using deep learning
    Qazi, Emad-ul-Haq
    Imran, Muhammad
    Haider, Noman
    Shoaib, Muhammad
    Razzak, Imran
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2022, 99
  • [5] Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security
    Kang, Min-Joo
    Kang, Je-Won
    [J]. PLOS ONE, 2016, 11 (06):
  • [6] Deep learning model for intrusion detection system utilizing convolution neural network
    Kamil, Waad Falah
    Mohammed, Imad Jasim
    [J]. OPEN ENGINEERING, 2023, 13 (01):
  • [7] Method of Intrusion Detection using Deep Neural Network
    Kim, Jin
    Shin, Nara
    Jo, Seung Yeon
    Kim, Sang Hyun
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2017, : 313 - 316
  • [8] Intrusion Detection System based on Network Traffic using Deep Neural Networks
    Chamou, Dimitra
    Toupas, Petros
    Ketzaki, Eleni
    Papadopoulos, Stavros
    Giannoutakis, Konstantinos M.
    Drosou, Anastasios
    Tzovaras, Dimitrios
    [J]. 2019 IEEE 24TH INTERNATIONAL WORKSHOP ON COMPUTER AIDED MODELING AND DESIGN OF COMMUNICATION LINKS AND NETWORKS (IEEE CAMAD), 2019,
  • [9] Augmenting IoT Intrusion Detection System Performance Using Deep Neural Network
    Sayed, Nasir
    Shoaib, Muhammad
    Ahmed, Waqas
    Qasem, Sultan Noman
    Albarrak, Abdullah M.
    Saeed, Faisal
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 1351 - 1374
  • [10] An Intrusion Detection System Using a Deep Neural Network With Gated Recurrent Units
    Xu, Congyuan
    Shen, Jizhong
    Du, Xin
    Zhang, Fan
    [J]. IEEE ACCESS, 2018, 6 : 48697 - 48707