Parameterizable Design on Convolutional Neural Networks Using Chisel Hardware Construction Language

被引:2
|
作者
Madineni, Mukesh Chowdary [1 ]
Vega, Mario [1 ]
Yang, Xiaokun [1 ]
机构
[1] Univ Houston Clear Lake, Houston, TX 77058 USA
关键词
convolutional neural network (CNN); Chisel HCL; FPGA; register-transfer level; Verilog HDL;
D O I
10.3390/mi14030531
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents a parameterizable design generator on convolutional neural networks (CNNs) using the Chisel hardware construction language (HCL). By parameterizing structural designs such as the streaming width, pooling layer type, and floating point precision, multiple register-transfer level (RTL) implementations can be created to meet various accuracy and hardware cost requirements. The evaluation is based on generated RTL designs including 16-bit, 32-bit, 64-bit, and 128-bit implementations on field-programmable gate arrays (FPGAs). The experimental results show that the 32-bit design achieves optimal hardware performance when setting the same weights for estimating the quality of the results, FPGA slice count, and power dissipation. Although the focus is on CNNs, the approach can be extended to other neural network models for efficient RTL design.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [1] Hardware Design Automation of Convolutional Neural Networks
    Solazzo, Andrea
    Del Sozzo, Emanuele
    De Rose, Irene
    De Silvestri, Matteo
    Durelli, Gianluca C.
    Santambrogio, Marco D.
    2016 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), 2016, : 224 - 229
  • [2] Design of Finger Sign Language Classification using Convolutional Neural Networks
    Kim G.
    Lee S.
    Yoon C.
    Hong S.
    Transactions of the Korean Institute of Electrical Engineers, 2022, 71 (10): : 1405 - 1410
  • [3] Design of Convolutional Neural Networks Hardware Acceleration Based on FPGA
    Qin Huabiao
    Cao Qinping
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (11) : 2599 - 2605
  • [4] Design of Convolutional Neural Networks Hardware Acceleration Based on FPGA
    Qin H.
    Cao Q.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2019, 41 (11): : 2599 - 2605
  • [5] Towards Hardware Trojan Resilient Design of Convolutional Neural Networks
    Sun, Peiyao
    Halak, Basel
    Kazmierski, Tomasz
    2022 IEEE 35TH INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (IEEE SOCC 2022), 2022, : 130 - 135
  • [6] A Survey on System-on-a-Chip Design Using Chisel HW Construction Language
    Kayra, Matti
    Hamalainen, Timo D.
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [7] Construction of discontinuity detectors using convolutional neural networks
    Wang, Shuyi
    Zhou, Zixu
    Chang, Lo-Bin
    Xiu, Dongbin
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)
  • [8] Construction of discontinuity detectors using convolutional neural networks
    Shuyi Wang
    Zixu Zhou
    Lo-Bin Chang
    Dongbin Xiu
    Journal of Scientific Computing, 2022, 91
  • [9] Sign Language Recognition Using Convolutional Neural Networks
    Pigou, Lionel
    Dieleman, Sander
    Kindermans, Pieter-Jan
    Schrauwen, Benjamin
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I, 2015, 8925 : 572 - 578
  • [10] Efficient Hardware Acceleration of Convolutional Neural Networks
    Kala, S.
    Jose, Babita R.
    Mathew, Jimson
    Nalesh, S.
    32ND IEEE INTERNATIONAL SYSTEM ON CHIP CONFERENCE (IEEE SOCC 2019), 2019, : 191 - 192