Existence of the zero-temperature limit of equilibrium states on topologically transitive countable Markov shifts

被引:1
|
作者
Beltran, Elmer [1 ]
Littin, Jorge [1 ]
Maldonado, Cesar [2 ]
Vargas, Victor [3 ]
机构
[1] Univ Catolica Norte, Dept Matemat, Ave Angamos 0610, Antofagasta, Chile
[2] IPICYT, Div Control & Sistemas Dinam, Camino Presa San Jose 2055,Lomas 4a Secc, San Luis Potosi, San Luis Potosi, Mexico
[3] Univ Porto, Ctr Math, Rua Campo Alegre 687, Porto, Portugal
关键词
countable Markov shift; equilibrium state; maximizing measure; renewal shift; stationary Markov measure; topologically transitive; ALPHABET SUBSHIFTS; ERGODIC OPTIMIZATION; PHASE-TRANSITIONS; GIBBS MEASURES;
D O I
10.1017/etds.2022.65
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a topologically transitive countable Markov shift Sigma and a summable locally constant potential f with finite Gurevich pressure and Var1(phi) < infinity. We prove the existence of the limit lim(t ->infinity) mu(t) in the weak mu(t) topology, where mu(t) is the unique equilibrium state associated to the potential t(phi). In addition, we present examples where the limit at zero temperature exists for potentials satisfying more general conditions.
引用
收藏
页码:3231 / 3254
页数:24
相关论文
共 50 条