On Lie Groups with Conformal Vector Fields Induced by Derivations

被引:0
|
作者
Zhang, Hui [1 ]
Chen, Zhiqi [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[2] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510520, Peoples R China
关键词
Pseudo-Riemannian Lie groups; Derivations; Essential conformal vector fields; Conformally flat; HOMOGENEOUS RICCI SOLITONS; LORENTZIAN MANIFOLDS;
D O I
10.1007/s00031-024-09845-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A pseudo-Riemannian Lie group (G,⟨center dot,center dot⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G,\langle \cdot ,\cdot \rangle )$$\end{document} is a connected and simply connected Lie group with a left-invariant pseudo-Riemannian metric of signature (p, q). This paper is to study pseudo-Riemannian Lie group (G,⟨center dot,center dot⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G,\langle \cdot ,\cdot \rangle )$$\end{document} with conformal vector fields induced by derivations. Firstly, we show that if h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {h}$$\end{document} is a Cartan subalgebra for a semisimple Levi factor of g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak g}$$\end{document}, where g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak g}$$\end{document} denotes the Lie algebra of G, then dimh <= max{0,min{p,q}-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim \mathfrak {h}\le \max \{0,\min \{p,q\}-1\}$$\end{document}. It implies that g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak g}$$\end{document} is solvable for both Riemannian (i.e., min{p,q}=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{p,q\}=0$$\end{document}) and Lorentzian (i.e., min{p,q}=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{p,q\}=1$$\end{document}) cases, and furthermore we prove that sl2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {sl}_2(\mathbb {R})$$\end{document} is the only possible Levi factor for the trans-Lorentzian (i.e. , min{p,q}=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{p,q\}=2$$\end{document}) case. Secondly, based on the classification of the Riemannian and Lorentzian cases in (Corrigendum J. Algebra 603, 38-40 2022), we prove that the Riemannian Lie groups are of constant zero sectional curvature, hence conformally flat; for the Lorentzian case, we obtain a simple criterion for such Lorentzian Lie groups to be conformally flat, and moreover, we show that they are steady algebraic Ricci soliton with vanishing scalar curvature. Finally, we remark that the first known examples of homogeneous essential Lorentzian manifolds that are non-conformally flat (Translation in Siberian Math. J. 33, 1087-1093 1992), are isometric to Lorentzian Lie groups with conformal vector fields induced by derivations.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Lie groups with conformal vector fields induced by derivations
    Zhang, Hui
    Chen, Zhiqi
    [J]. JOURNAL OF ALGEBRA, 2021, 584 : 304 - 316
  • [2] Corrigendum to "Lie groups with conformal vector fields induced by derivations" [J. Algebra 584 (2021) 304-316]
    Zhang, Hui
    Chen, Zhiqi
    [J]. JOURNAL OF ALGEBRA, 2022, 603 : 38 - 40
  • [3] Conformal Vector Fields on Lorentzian Lie Groups of Dimension 4
    Tan, Ju
    Chen, Zhiqi
    Xu, Na
    [J]. JOURNAL OF LIE THEORY, 2018, 28 (03) : 757 - 765
  • [4] Conformal Vector Fields on Lorentzian Lie Groups of Dimension 5
    Zhang, Hui
    Chen, Zhiqi
    Zhang, Shaoxiang
    [J]. JOURNAL OF LIE THEORY, 2020, 30 (03) : 691 - 703
  • [5] Conformal vector fields on Lie groups: The trans-Lorentzian signature
    Zhang, Hui
    Chen, Zhiqi
    Tan, Ju
    [J]. JOURNAL OF ALGEBRA, 2024, 646 : 326 - 356
  • [6] Conformal Vector Fields on Lie Groups of Dimension 4 with Signature of (2,2)
    Tan, Ju
    Xu, Na
    [J]. JOURNAL OF LIE THEORY, 2021, 31 (02) : 543 - 556
  • [7] LEFT-INVARIANT CONFORMAL VECTOR FIELDS ON NON-SOLVABLE LIE GROUPS
    Zhang, Hui
    Chen, Zhiqi
    Tan, Ju
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (02) : 843 - 849
  • [8] Geometric vector fields on Lie groups
    Walschap, G
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1997, 7 (03) : 219 - 230
  • [9] Generalized conformal derivations of Lie conformal algebras
    Fan, Guangzhe
    Hong, Yanyong
    Su, Yucai
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (09)
  • [10] Conformal (σ, T)-derivations on Lie conformal algebras
    Feng, Tianqi
    Zhao, Jun
    Chen, Liangyun
    [J]. FILOMAT, 2024, 38 (02) : 357 - 368