VPFNet: Improving 3D Object Detection With Virtual Point Based LiDAR and Stereo Data Fusion

被引:71
|
作者
Zhu, Hanqi [1 ]
Deng, Jiajun [2 ]
Zhang, Yu [1 ]
Ji, Jianmin [1 ]
Mao, Qiuyu [1 ]
Li, Houqiang [2 ]
Zhang, Yanyong [1 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Peoples R China
[2] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230027, Peoples R China
关键词
3D object detection; multiple sensors; point clouds; stereo images; R-CNN;
D O I
10.1109/TMM.2022.3189778
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It has been well recognized that fusing the complementary information from depth-aware LiDAR point clouds and semantic-rich stereo images would benefit 3D object detection. Nevertheless, it is non-trivial to explore the inherently unnatural interaction between sparse 3D points and dense 2D pixels. To ease this difficulty, the recent approaches generally project the 3D points onto the 2D image plane to sample the image data and then aggregate the data at the points. However, these approaches often suffer from the mismatch between the resolution of point clouds and RGB images, leading to sub-optimal performance. Specifically, taking the sparse points as the multi-modal data aggregation locations causes severe information loss for high-resolution images, which in turn undermines the effectiveness of multi-sensor fusion. In this paper, we present VPFNet -a new architecture that cleverly aligns and aggregates the point cloud and image data at the "virtual" points. Particularly, with their density lying between that of the 3D points and 2D pixels, the virtual points can nicely bridge the resolution gap between the two sensors, and thus preserve more information for processing. Moreover, we also investigate the data augmentation techniques that can be applied to both point clouds and RGB images, as the data augmentation has made non-negligible contribution towards 3D object detectors to date. We have conducted extensive experiments on KITTI dataset, and have observed good performance compared to the state-of-the-art methods. Remarkably, our VPFNet achieves 83.21% moderate $AP_{3D}$ and 91.86% moderate $AP_{BEV}$ on the KITTI test set. The network design also takes computation efficiency into consideration - we can achieve a FPS of 15 on a single NVIDIA RTX 2080Ti GPU.
引用
收藏
页码:5291 / 5304
页数:14
相关论文
共 50 条
  • [1] 3D Object Detection Based on LiDAR Data
    Sahba, Ramin
    Sahba, Amin
    Jamshidi, Mo
    Rad, Paul
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 511 - 514
  • [2] 3D Object Detection with Fusion Point Attention Mechanism in LiDAR Point Cloud
    Liu Weili
    Zhu Deli
    Luo Huahao
    Li Yi
    ACTA PHOTONICA SINICA, 2023, 52 (09)
  • [3] STFNET: Sparse Temporal Fusion for 3D Object Detection in LiDAR Point Cloud
    Meng, Xin
    Zhou, Yuan
    Ma, Jun
    Jiang, Fangdi
    Qi, Yongze
    Wang, Cui
    Kim, Jonghyuk
    Wang, Shifeng
    IEEE SENSORS JOURNAL, 2025, 25 (03) : 5866 - 5877
  • [4] Real Pseudo-Lidar Point Cloud Fusion for 3D Object Detection
    Fan, Xiangsuo
    Xiao, Dachuan
    Cai, Dengsheng
    Ding, Wentao
    ELECTRONICS, 2023, 12 (18)
  • [5] 3D object detection based on image and LIDAR fusion for autonomous driving
    Chen G.
    Yi H.
    Mao Z.
    International Journal of Vehicle Information and Communication Systems, 2023, 8 (03) : 237 - 251
  • [6] Stereo Point Cloud Refinement for 3D Object Detection
    Liu, Wangchao
    Wang, Teng
    Wang, Yang
    Zhang, Xiangyu
    Lou, Xin
    2021 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2021) & 2021 IEEE CONFERENCE ON POSTGRADUATE RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIMEASIA 2021), 2021, : 61 - 64
  • [7] A Frustum-based probabilistic framework for 3D object detection by fusion of LiDAR and camera data
    Gong, Zheng
    Lin, Haojia
    Zhang, Dedong
    Luo, Zhipeng
    Zelek, John
    Chen, Yiping
    Nurunnabi, Abdul
    Wang, Cheng
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 159 : 90 - 100
  • [8] Deep Learning-based 3D Object Detection Using LiDAR and Image Data Fusion
    Bharadhwaj, Bizzam Murali
    Nair, Binoy B.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [9] 3D point filtering algorithm for 3d object detection based on stereo image processing
    Kim J.-M.
    Park J.-M.
    Lee J.-W.
    Journal of Institute of Control, Robotics and Systems, 2021, 27 (09): : 676 - 684
  • [10] Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle Applications
    Zhao, Xiangmo
    Sun, Pengpeng
    Xu, Zhigang
    Min, Haigen
    Yu, Hongkai
    IEEE SENSORS JOURNAL, 2020, 20 (09) : 4901 - 4913