GLOBAL BOUNDEDNESS FOR THE NONLINEAR KLEIN-GORDON-SCHRODINGER SYSTEM WITH POWER NONLINEARITY

被引:3
|
作者
Shi, Qihong [1 ]
机构
[1] Lanzhou Univ Technol, Dept Math, Lanzhou 730050, Peoples R China
关键词
SOBOLEV NORMS; NLS EQUATION; UNIQUENESS; GROWTH; EXISTENCE; INEQUALITIES; ATTRACTORS; TIME;
D O I
10.57262/die036-0910-837
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Cauchy problem of the Klein-Gordon-Schro center dot dinger (KGS) equations with a defocusing nonlinearity in three spatial dimensions. The global wellposedness at H2regularity level and the growth bounds for the corresponding Sobolev norm of the solutions are obtained by applying Koch-Tzvetkov type Strichartz estimates and modified energy, which removes the restriction of the smallness for the initial data in the previous literature and extends the exponential growth bounds to polynomial case.
引用
收藏
页码:837 / 858
页数:22
相关论文
共 50 条
  • [1] Global attractor for Klein-Gordon-Schrodinger lattice system
    尹福其
    周盛凡
    殷苌茗
    肖翠辉
    Applied Mathematics and Mechanics(English Edition), 2007, (05) : 695 - 706
  • [2] Global attractor for Klein-Gordon-Schrodinger lattice system
    Yin, Fu-qi
    Zhou, Sheng-fan
    Yin, Chang-ming
    Xiao, Cui-hui
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (05) : 695 - 706
  • [3] Global attractor and its dimension for a Klein-Gordon-Schrodinger system
    Poulou, M. N.
    Stavrakakis, N. M.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 1013 - 1020
  • [4] On Klein-Gordon-Schrodinger Control System
    Wang, Quan-Fang
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2253 - 2257
  • [5] Wellposedness in energy space for the nonlinear Klein-Gordon-Schrodinger system
    Shi, Qi-Hong
    Li, Wan-Tong
    Wang, Shu
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 251 : 55 - 64
  • [6] GLOBAL SOLUTIONS OF THE KLEIN-GORDON-SCHRODINGER SYSTEM WITH ROUGH DATA
    Pecher, Hartmut
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2004, 17 (1-2) : 179 - 214
  • [7] Global solution in a weak energy class for Klein-Gordon-Schrodinger system
    Shi, Qihong
    Jia, Yaqian
    Wang, Xunyang
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (02): : 633 - 643
  • [8] Global attractor for a system of Klein-Gordon-Schrodinger type in all R
    Poulou, Marilena N.
    Stavrakakis, Nikolaos M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (07) : 2548 - 2562
  • [9] Klein-Gordon-Schrodinger system: Dinucleon field
    Ran, Yanping
    Shi, Qihong
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
  • [10] Regularity of the Global Attractor for the Klein-Gordon-Schrodinger Equation
    Mathematisches Institut, Universität zu Köln, D-50931 Köln, Germany
    不详
    Math Methods Appl Sci, 17-18 (1535-1554):