Anomalous hydrodynamics with triangular point group in 2+1 dimensions

被引:3
|
作者
Qi, Marvin [1 ]
Guo, Jinkang
Lucas, Andrew
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.107.144305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a theory of hydrodynamics for a vector U(1) charge in 2+1 dimensions, whose rotational symmetry is broken to the point group of an equilateral triangle. We show that it is possible for this U(1) to have a chiral anomaly. The hydrodynamic consequence of this anomaly is the introduction of a ballistic contribution to the dispersion relation for the hydrodynamic modes. We simulate classical Markov chains and find compelling numerical evidence for the anomalous hydrodynamic universality class. Generalizations of our theory to other symmetry groups are also discussed.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Dissipative hydrodynamics in 2+1 dimensions
    Chaudhuri, A. K.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2007, 16 (7-8): : 2325 - 2331
  • [2] Dissipative hydrodynamics in 2+1 dimensions
    Chaudhuri, A. K.
    [J]. PHYSICAL REVIEW C, 2006, 74 (04):
  • [3] Hydrodynamics with triangular point group
    Friedman, Aaron J.
    Cook, Caleb Q.
    Lucas, Andrew
    [J]. SCIPOST PHYSICS, 2023, 14 (05):
  • [4] Parity-violating hydrodynamics in 2+1 dimensions
    Jensen, Kristan
    Kaminski, Matthias
    Kovtun, Pavel
    Meyer, Rene
    Ritz, Adam
    Yarom, Amos
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05):
  • [5] Noncommutativity in (2+1)-dimensions and the Lorentz group
    Falomir, H.
    Vega, F.
    Gamboa, J.
    Mendez, F.
    Loewe, M.
    [J]. PHYSICAL REVIEW D, 2012, 86 (10):
  • [6] Phenomenology of nonrelativistic parity-violating hydrodynamics in 2+1 dimensions
    Lucas, Andrew
    Surowka, Piotr
    [J]. PHYSICAL REVIEW E, 2014, 90 (06):
  • [7] THE EVOLUTION OF GRAVITATING POINT PARTICLES IN 2+1 DIMENSIONS
    THOOFT, G
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (05) : 1023 - 1038
  • [8] Hydrodynamics of a rotating charged black hole in (2+1) dimensions with a scalar charge
    Naji, J.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2014, 92 (11) : 1320 - 1323
  • [9] Anomalous hydrodynamics in two dimensions
    RABIN BANERJEE
    [J]. Pramana, 2016, 86 : 453 - 458
  • [10] CANONICAL QUANTIZATION OF GRAVITATING POINT PARTICLES IN 2+1 DIMENSIONS
    TENHOOFT, G
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (08) : 1653 - 1664