Wavelet multiplier associated with the Watson transform

被引:0
|
作者
Shukla, Pragya [1 ]
Upadhyay, S. K. [1 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi, Uttar Pradesh, India
关键词
Pseudo-differential operators; Watson transform; Hilbert-Schmidt operator; Compact operator; Landau-Pollak Slepian operator; Trace class; BOUNDEDNESS;
D O I
10.1007/s13398-022-01342-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the L-p-boundedness, compactness and Hilbert-Schmidt class of wavelet multiplier associated with the Watson transform are investigated and its various properties studied. Landau-Pollak Slepian operator associated with the Watson transform is discussed as an application of wavelet multiplier. The relation between Watson wavelet multipliers and Sobolev space is given and trace class is introduced.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Wavelet multiplier associated with the Watson transform
    Pragya Shukla
    S. K. Upadhyay
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [2] Continuous Watson wavelet transform
    Upadhyay, S. K.
    Tripathi, Alok
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (09) : 639 - 647
  • [3] Approximation in Watson Wavelet Transform
    Upadhyay, Santosh K.
    Tripathi, Alok
    Kumar, Anuj
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2015, 39 (01) : 149 - 162
  • [4] WATSON WAVELET TRANSFORM: CONVOLUTION PRODUCT AND TWO-WAVELET MULTIPLIERS
    Upadhyay, Santosh Kumar
    Shukla, Pragya
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (02)
  • [5] The localization operator and wavelet multipliers involving the Watson transform
    H. M. Srivastava
    Pragya Shukla
    S. K. Upadhyay
    [J]. Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [6] Calderon’s reproducing formula for Watson wavelet transform
    S. K. Upadhyay
    Alok Tripathi
    [J]. Indian Journal of Pure and Applied Mathematics, 2015, 46 : 269 - 277
  • [7] The localization operator and wavelet multipliers involving the Watson transform
    Srivastava, H. M.
    Shukla, Pragya
    Upadhyay, S. K.
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (04)
  • [8] CALDERON'S REPRODUCING FORMULA FOR WATSON WAVELET TRANSFORM
    Upadhyay, S. K.
    Tripathi, Alok
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (03): : 269 - 277
  • [9] Wavelet transform associated with Dunkl transform
    Prasad, Akhilesh
    Verma, R. K.
    Verma, S. K.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (09) : 481 - 496
  • [10] Implementation of Lifting Scheme Discrete Wavelet Transform Using Modified Multiplier
    Kumar, G. Kishore
    Balaji, N.
    [J]. ADVANCED COMPUTATIONAL AND COMMUNICATION PARADIGMS, VOL 1, 2018, 475 : 345 - 350