Pretreating and normalizing metabolomics data for statistical analysis

被引:24
|
作者
Sun, Jun [1 ]
Xia, Yinglin [2 ]
机构
[1] Univ Illinois, UIC Canc Ctr, Jesse Brown VA Med Ctr Chicago 537, Dept Med, Chicago, IL 60612 USA
[2] Univ Illinois, Dept Med, Div Gastroenterol & Hepatol, Chicago, IL 60612 USA
关键词
Data centering and scaling; Data normalization; Data transformation; Missing values; MS-Based data preprocessing; NMR Data preprocessing; Outliers; Preprocessing/; pretreatment; CHROMATOGRAPHY-MASS SPECTROMETRY; TIME-DOMAIN ALGORITHM; PATTERN-RECOGNITION; H-1-NMR SPECTRA; MISSING VALUES; URINE; CREATININE; IMPUTATION; REDUCTION; METABOANALYST;
D O I
10.1016/j.gendis.2023.04.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolomics as a research field and a set of techniques is to study the entire small molecules in biological samples. Metabolomics is emerging as a powerful tool generally for pre-cision medicine. Particularly, integration of microbiome and metabolome has revealed the mechanism and functionality of microbiome in human health and disease. However, metabo-lomics data are very complicated. Preprocessing/pretreating and normalizing procedures on metabolomics data are usually required before statistical analysis. In this review article, we comprehensively review various methods that are used to preprocess and pretreat metabolo-mics data, including MS-based data and NMR-based data preprocessing, dealing with zero and/ or missing values and detecting outliers, data normalization, data centering and scaling, data transformation. We discuss the advantages and limitations of each method. The choice for a suitable preprocessing method is determined by the biological hypothesis, the characteristics of the data set, and the selected statistical data analysis method. We then provide the perspective of their applications in the microbiome and metabolome research. (c) 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:18
相关论文
共 50 条
  • [1] NormalizeMets: assessing, selecting and implementing statistical methods for normalizing metabolomics data
    De Livera, Alysha M.
    Olshansky, Gavriel
    Simpson, Julie A.
    Creek, Darren J.
    METABOLOMICS, 2018, 14 (05)
  • [2] NormalizeMets: assessing, selecting and implementing statistical methods for normalizing metabolomics data
    Alysha M. De Livera
    Gavriel Olshansky
    Julie A. Simpson
    Darren J. Creek
    Metabolomics, 2018, 14
  • [3] Normalizing and Integrating Metabolomics Data
    De Livera, Alysha M.
    Dias, Daniel A.
    De Souza, David
    Rupasinghe, Thusitha
    Pyke, James
    Tull, Dedreia
    Roessner, Ute
    McConville, Malcolm
    Speed, Terence P.
    ANALYTICAL CHEMISTRY, 2012, 84 (24) : 10768 - 10776
  • [4] Computational and statistical analysis of metabolomics data
    Sheng Ren
    Anna A. Hinzman
    Emily L. Kang
    Rhonda D. Szczesniak
    Long Jason Lu
    Metabolomics, 2015, 11 : 1492 - 1513
  • [5] Statistical and Network Analysis of Metabolomics Data
    Ullah, Ehsan
    Mall, Raghvendra
    Rawi, Reda
    Bensmail, Halima
    PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2016, : 544 - 545
  • [6] Computational and statistical analysis of metabolomics data
    Ren, Sheng
    Hinzman, Anna A.
    Kang, Emily L.
    Szczesniak, Rhonda D.
    Lu, Long Jason
    METABOLOMICS, 2015, 11 (06) : 1492 - 1513
  • [7] Strategies for Data Handling and Statistical Analysis in Metabolomics Studies
    Defernez, Marianne
    Le Gall, Gwenaelle
    METABOLOMICS COMING OF AGE WITH ITS TECHNOLOGICAL DIVERSITY, 2013, 67 : 493 - 555
  • [8] Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches
    Vollmar, Ana K. Rosen
    Rattray, Nicholas J. W.
    Cai, Yuping
    Santos-Neto, Alvaro J.
    Deziel, Nicole C.
    Jukic, Anne Marie Z.
    Johnson, Caroline H.
    METABOLITES, 2019, 9 (10)
  • [9] Statistical methods for the analysis of high-throughput metabolomics data
    Bartel, Joerg
    Krumsiek, Jan
    Theis, Fabian J.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2013, 4 (05):
  • [10] Evaluation of Metabolomics Data Using Univariate and Multivariate Statistical Analysis Techniques
    Moroz, J.
    Fallone, G.
    Syme, A.
    Allalunis-Turner, J.
    MEDICAL PHYSICS, 2010, 37 (06) : 3471 - +