A new wavelet-based estimation of conditional density via block threshold method

被引:0
|
作者
Shirazi, Esmaeil [1 ]
Faugeras, Olivier P. [2 ]
机构
[1] Gonbad Kavous Univ, Fac Sci, Gonbad Kavous, Iran
[2] Univ Toulouse 1 Capitole, Toulouse Sch Econ, 1 Esplanade Univ,Off T106, F-31080 Toulouse 06, France
关键词
Besov space; block threshold estimator; conditional density; non parametric estimation; wavelet methods;
D O I
10.1080/03610926.2023.2279917
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new wavelet-based estimator of the conditional density is investigated. The estimator is constructed by combining a special ratio technique and applying a non negative estimator to the density function in the denominator. We used a wavelet shrinkage technique to find an adaptive estimator for this problem. In particular, a block thresholding estimator is proposed, and we prove that it enjoys powerful mean integrated squared error properties over Besov balls. Moreover, it is shown that convergence rates for the mean integrated squared error (MISE) of the adaptive estimator are optimal under some mild assumptions. Finally, a numerical example has been considered to illustrate the performance of the estimator.
引用
收藏
页码:8155 / 8165
页数:11
相关论文
共 50 条
  • [1] A priori clipping threshold estimation for wavelet-based method of moments matrices
    Andriulli, F
    Vecchi, G
    Vipiana, F
    Pirinoli, P
    IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 1475 - 1478
  • [2] Density estimation by wavelet-based reproducing kernels
    Huang, SY
    STATISTICA SINICA, 1999, 9 (01) : 137 - 151
  • [3] Wavelet-Based Density Estimation for Persistent Homology
    Haberle, Konstantin
    Bravi, Barbara
    Monod, Anthea
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2024, 12 (02): : 347 - 376
  • [4] Wavelet-based density estimation and application to process monitoring
    Safavi, AA
    Chen, J
    Romagnoli, JA
    AICHE JOURNAL, 1997, 43 (05) : 1227 - 1241
  • [5] Wavelet-Based Density Estimation in a Heteroscedastic Convolution Model
    Chesneau, Christophe
    Fadili, Jalal
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (17) : 3085 - 3099
  • [6] Wavelet-based method for nonparametric estimation of HMM's
    Couvreur, L
    Couvreur, C
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (02) : 25 - 27
  • [7] Shape-preserving wavelet-based multivariate density estimation
    Aya-Moreno, Carlos
    Geenens, Gery
    Penev, Spiridon
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 168 : 30 - 47
  • [8] Threshold analysis in wavelet-based denoising
    Zhang, L
    Bao, P
    Pan, Q
    ELECTRONICS LETTERS, 2001, 37 (24) : 1485 - 1486
  • [9] Spectral density estimation of telemetric data by means of a wavelet-based approach
    Klionsky D.M.
    Oreshko N.I.
    Geppener V.V.
    Pattern Recognition and Image Analysis, 2011, 21 (3) : 497 - 500
  • [10] Linear Wavelet-Based Estimation for Derivative of a Density under Random Censorship
    Chaubey, YocTendra P.
    Doosti, Hassan
    Shirazi, Esmaeel
    Rao, B. L. S. Prakasa
    JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2010, 9 (01): : 41 - 51