Asymptotic behavior of solutions for a nonlinear viscoelastic higher-order p(x)-Laplacian equation with variable-exponent logarithmic source term

被引:2
|
作者
Shahrouzi, Mohammad [1 ,2 ]
机构
[1] Jahrom Univ, Dept Math, POB 74137-66171, Jahrom, Iran
[2] Ferdowsi Univ Mashhad, Fac Math Sci, Dept Appl Math, Mashhad, Iran
来源
关键词
Global existence; Asymptotic stability; Higher-order; Viscoelastic; p(x)-Laplacian; P-LAPLACIAN TYPE; BLOW-UP ANALYSIS; WAVE-EQUATION; INITIAL ENERGY; EXISTENCE; DECAY;
D O I
10.1007/s40590-023-00551-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study aims for the global existence and asymptotic stability of solutions for a class of nonlinear viscoelastic higher-order p(x)-Laplacian equation. First, we prove the global existence of solutions in the appropriate range of the variable exponents and next, by using Martinez's Lemma, we prove the asymptotic stability of solutions. Our results extend and improve the earlier results in the literature.
引用
收藏
页数:20
相关论文
共 50 条