Improving the representation of groundwater processes in a large-scale water resources model

被引:0
|
作者
Baron, Helen Elizabeth [1 ,6 ]
Keller, Virginie D. J. [1 ]
Horan, R. [1 ]
MacAllister, Donald John [2 ]
Simpson, Mike [1 ]
Jackson, Christopher R. [3 ]
Houghton-Carr, Helen A. [1 ]
Rickards, Nathan [1 ]
Garg, Kaushal K. [4 ]
Sekhar, Muddu [5 ]
MacDonald, Alan [2 ]
Rees, Gwyn [1 ]
机构
[1] UK Ctr Ecol & Hydrol, Wallingford, England
[2] British Geol Survey, Edinburgh, Scotland
[3] British Geol Survey, Keyworth, England
[4] Int Crops Res Inst Semi Arid Trop, Patancheru, India
[5] Indian Inst Sci, Bengaluru, India
[6] UK Ctr Ecol & Hydrol, MacLean Bldg,Benson Lane, Wallingford OX10 8BB, Oxon, England
基金
英国自然环境研究理事会;
关键词
integrated water resource model; groundwater; India; Cauvery River; CAUVERY RIVER-BASIN; SURFACE-WATER; NASH-SUTCLIFFE; RAINFALL; CHALLENGES; IMPACT; INDIA;
D O I
10.1080/02626667.2023.2208755
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
This study explores whether incorporating a more sophisticated representation of groundwater, and human-groundwater interactions, improves predictive capability in a large-scale water resource model. The Global Water Availability Assessment model (GWAVA) is developed to include a simple layered aquifer and associated fluxes (GWAVA-GW), and applied to the Cauvery River basin in India, a large, human-impacted basin with a high dependence on groundwater. GWAVA-GW shows good predictive skill for streamflow upstream of the Mettur dam: Kling-Gupta efficiency >= 0.3 for 91% of sub-catchments, and improved model skill for streamflow prediction compared to GWAVA over the majority of the basin. GWAVA-GW shows some level of predictive skill for groundwater levels over seasonal and long-term time scales, with a tendency to overestimate depth to groundwater in areas with high levels of groundwater pumping. Overall, GWAVA-GW is a useful tool when assessing water resources at a basin scale, especially in areas that rely on groundwater.
引用
收藏
页码:1264 / 1285
页数:22
相关论文
共 50 条
  • [1] Large-scale water resources management within the framework of GLOWA-Danube. Part A: The groundwater model
    Barthel, R
    Rojanschi, V
    Wolf, J
    Braun, J
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH, 2005, 30 (6-7) : 372 - 382
  • [2] Large-Scale Water Storage in Aquifers: Enhancing Qatar's Groundwater Resources
    Jacob, Damien
    Ackerer, Philippe
    Baalousha, Husam Musa
    Delay, Frederick
    [J]. WATER, 2021, 13 (17)
  • [3] The large-scale groundwater model Rurscholle
    Bachmann, Daniel
    Becker, Bernhard
    van Linn, Andreas
    Kongeter, Juergen
    [J]. GRUNDWASSER, 2007, 12 (01) : 26 - 36
  • [4] Large-scale modelling of groundwater resources in an arid region
    Kalbus, Edda
    Oswald, Sascha
    Wang, Wenqing
    Kolditz, Olaf
    Engelhardt, Irina
    Al-Saud, Mohammed I.
    Rausch, Randolf
    [J]. GQ10: GROUNDWATER QUALITY MANAGEMENT IN A RAPIDLY CHANGING WORLD, 2011, 342 : 27 - +
  • [5] Large-Scale Uranium Contamination of Groundwater Resources in India
    Coyte, Rachel M.
    Jain, Ratan C.
    Srivastava, Sudhir K.
    Sharma, Kailash C.
    Khalil, Abedalrazq
    Ma, Lin
    Vengosh, Avner
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2018, 5 (06): : 341 - 347
  • [6] Large-scale sensitivities of groundwater and surface water to groundwater withdrawal
    Bierkens, Marc F. P.
    Sutanudjaja, Edwin H.
    Wanders, Niko
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (11) : 5859 - 5878
  • [7] Improving Large-scale Language Models and Resources for Filipino
    Cruz, Jan Christian Blaise
    Cheng, Charibeth
    [J]. LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 6548 - 6555
  • [8] Comments on Large-Scale Uranium Contamination of Groundwater Resources in India
    Rathore, D. P. S.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2018, 5 (09): : 591 - 592
  • [9] Groundwater Restoration: Large-Scale Benefits of Small-Scale Processes
    Suthersan, Suthan
    Potter, Scott
    Schnobrich, Matthew
    [J]. GROUND WATER MONITORING AND REMEDIATION, 2013, 33 (03): : 31 - 37
  • [10] Large-scale Knowledge Representation Resources for Cognitive Science Research
    Miller, George A.
    Fillmore, Charles J.
    Palmer, Martha S.
    Lenat, Doug
    Hayes, Pat
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY, 2004, : 19 - 19