Homotopy Double Copy of Noncommutative Gauge Theories

被引:3
|
作者
Szabo, Richard J. [1 ,2 ,3 ]
Trojani, Guillaume [1 ,2 ]
机构
[1] Heriot Watt Univ, Dept Math, Colin Maclaurin Bldg, Edinburgh EH14 4AS, Scotland
[2] Maxwell Inst Math Sci, Bayes Ctr, 47 Potterrow, Edinburgh EH8 9BT, Scotland
[3] Higgs Ctr Theoret Phys, James Clerk Maxwell Bldg,Kings Bldg,Mayfield Rd, Edinburgh EH9 3JZ, Scotland
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 08期
基金
巴西圣保罗研究基金会;
关键词
noncommutative field theory; homotopy algebras; colour-kinematics duality; double copy; SEIBERG-WITTEN MAPS; FIELD-THEORY; DEFORMATION; QUANTIZATION; GRAVITY; AMPLITUDES; ALGEBRAS; GEOMETRY; STRINGS;
D O I
10.3390/sym15081543
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We discuss the double-copy formulation of Moyal-Weyl-type noncommutative gauge theories from the homotopy algebraic perspective of factorisations of L infinity-algebras. We define new noncommutative scalar field theories with rigid colour symmetries taking the role of the zeroth copy, where the deformed colour algebra plays the role of a kinematic algebra; some of these theories have a trivial classical limit but exhibit colour-kinematics duality, from which we construct the double copy theory explicitly. We show that noncommutative gauge theories exhibit a twisted form of colour-kinematics duality, which we use to show that their double copies match with the commutative case. We illustrate this explicitly for Chern-Simons theory, and for Yang-Mills theory where we obtain a modified Kawai-Lewellen-Tye relationship whose momentum kernel is linked to a binoncommutative biadjoint scalar theory. We reinterpret rank-one noncommutative gauge theories as double copy theories and discuss how our findings tie in with recent discussions of Moyal-Weyl deformations of self-dual Yang-Mills theory and gravity.
引用
收藏
页数:73
相关论文
共 50 条
  • [1] NONCOMMUTATIVE GAUGE THEORIES
    Wohlgenannt, M.
    UKRAINIAN JOURNAL OF PHYSICS, 2012, 57 (04): : 389 - 395
  • [2] Gauge theories on noncommutative spaces
    Wess, J
    PARTICLE PHYSICS IN THE NEW MILLENNIUM, 2003, 616 : 320 - 332
  • [3] Gauge theories on the noncommutative sphere
    Klimcík, C
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (02) : 257 - 279
  • [4] Comments on noncommutative gauge theories
    Bak, D
    Lee, K
    Park, LH
    PHYSICS LETTERS B, 2001, 501 (3-4) : 305 - 312
  • [5] Gauge Theories on the Noncommutative Sphere
    C. Klimčík
    Communications in Mathematical Physics, 1998, 199 : 257 - 279
  • [6] Gauge theories in noncommutative geometry
    Masson, Thierry
    FRONTIERS OF FUNDAMENTAL PHYSICS, 2012, 1446 : 73 - 98
  • [7] Renormalization of noncommutative gauge theories
    Salizzoni, M
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2002, 50 (8-9): : 966 - 972
  • [8] Cohomology theories for homotopy algebras and noncommutative geometry
    Hamilton, Alastair
    Lazarev, Andrey
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (03): : 1503 - 1583
  • [9] Noncommutative gauge theories and the cosmological constant
    Armoni, A
    Russo, R
    PHYSICAL REVIEW D, 2001, 64 (08)
  • [10] Noncommutative gauge theories and Lorentz symmetry
    Banerjee, R
    Chakraborty, B
    Kumar, K
    PHYSICAL REVIEW D, 2004, 70 (12): : 125004 - 1