FADngs: Federated Learning for Anomaly Detection

被引:3
|
作者
Dong, Boyu [1 ]
Chen, Dong [1 ]
Wu, Yu [2 ]
Tang, Siliang [1 ]
Zhuang, Yueting [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
[2] Princeton Univ, Sch Comp Sci, Princeton, NJ 08540 USA
关键词
Anomaly detection; distributed learning; federated learning (FL); unsupervised learning; DISTANCE CORRELATION; DEPENDENCE;
D O I
10.1109/TNNLS.2024.3350660
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the increasing demand for data privacy, federated learning (FL) has gained popularity for various applications. Most existing FL works focus on the classification task, overlooking those scenarios where anomaly detection may also require privacy-preserving. Traditional anomaly detection algorithms cannot be directly applied to the FL setting due to false and missing detection issues. Moreover, with common aggregation methods used in FL (e.g., averaging model parameters), the global model cannot keep the capacities of local models in discriminating anomalies deviating from local distributions, which further degrades the performance. For the aforementioned challenges, we propose Federated Anomaly Detection with Noisy Global Density Estimation, and Self-supervised Ensemble Distillation (FADngs). Specifically, FADngs aligns the knowledge of data distributions from each client by sharing processed density functions. Besides, FADngs trains local models in an improved contrastive learning way that learns more discriminative representations specific for anomaly detection based on the shared density functions. Furthermore, FADngs aggregates capacities by ensemble distillation, which distills the knowledge learned from different distributions to the global model. Our experiments demonstrate that the proposed method significantly outperforms state-of-the-art federated anomaly detection methods. We also empirically show that the shared density function is privacy-preserving. The code for the proposed method is provided for research purposes https://github.com/kanade00/Federated_Anomaly_detection.
引用
收藏
页码:2578 / 2592
页数:15
相关论文
共 50 条
  • [1] Anomaly Detection through Unsupervised Federated Learning
    Nardi, Mirko
    Valerio, Lorenzo
    Passarella, Andrea
    2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 495 - 501
  • [2] Federated Learning for Anomaly Detection in Vehicular Networks
    Tham, Chen-Khong
    Yang, Lu
    Khanna, Akshit
    Gera, Bhavya
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [3] Network Anomaly Detection Using Federated Learning
    Marfo, William
    Tosh, Deepak K.
    Moore, Shirley V.
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [4] A Federated Learning Approach to Anomaly Detection in Smart Buildings
    Sater, Raed Abdel
    Ben Hamza, A.
    ACM TRANSACTIONS ON INTERNET OF THINGS, 2021, 2 (04):
  • [5] Enhancing Robustness in Federated Learning by Supervised Anomaly Detection
    Quan, Pengrui
    Lee, Wei-Han
    Srivatsa, Mudhakar
    Srivastava, Mani
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 996 - 1003
  • [6] Enhancing IoT Anomaly Detection Performance for Federated Learning
    Weinger, Brett
    Kim, Jinoh
    Sim, Alex
    Nakashima, Makiya
    Moustafa, Nour
    Wu, K. John
    2020 16TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2020), 2020, : 206 - 213
  • [7] Enhancing IoT anomaly detection performance for federated learning
    Weinger, Brett
    Kim, Jinoh
    Sim, Alex
    Nakashima, Makiya
    Moustafa, Nour
    Wu, K. John
    DIGITAL COMMUNICATIONS AND NETWORKS, 2022, 8 (03) : 314 - 323
  • [8] Harnessing federated learning for anomaly detection in supercomputer nodes
    Farooq, Emmen
    Milano, Michela
    Borghesi, Andrea
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 161 : 673 - 685
  • [9] Federated Learning for Anomaly Detection in Maritime Movement Data
    Graser, Anita
    Weissenfeld, Axel
    Heistracher, Clemens
    Dragaschnig, Melitta
    Widhalm, Peter
    PROCEEDINGS OF THE 2024 25TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT, MDM 2024, 2024, : 77 - 82
  • [10] Federated deep learning for anomaly detection in the internet of things
    Wang, Xiaofeng
    Wang, Yonghong
    Javaheri, Zahra
    Almutairi, Laila
    Moghadamnejad, Navid
    Younes, Osama S.
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108