Graphite recycling from spent lithium-ion batteries for fabrication of high-performance aluminum-ion batteries

被引:0
|
作者
Wang, Li [1 ]
Wang, Chao [1 ]
Zhang, Jing-Yi [1 ]
Qiu, Jia-Cheng [1 ]
Fu, Xu-Wang [1 ]
Zhang, Zi-Rui [1 ]
Feng, Jian-Min [1 ]
Dong, Lei [1 ]
Long, Cong-Lai [1 ]
Li, De-Jun [1 ]
Wang, Xiao-Wei [2 ]
Zhang, Bao [2 ]
Zhang, Jia-Feng [2 ]
Zhao, Rui-Rui [3 ]
机构
[1] Tianjin Normal Univ, Coll Phys & Mat Sci, Tianjin 300387, Peoples R China
[2] Cent South Univ, Sch Met & Environm, Natl Engn Lab High Efficiency Recovery Refractory, Changsha 410083, Peoples R China
[3] South China Normal Univ, Sch Chem, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Aluminum ion batteries; Lithium-ion batteries; Graphite anode; Recycling; EXPANDED GRAPHITE; ANODE MATERIAL; CATHODE; RECOVERY; GRAPHENE;
D O I
10.1007/s12598-023-02572-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Efficient extraction of electrode components from recycled lithium-ion batteries (LIBs) and their high-value applications are critical for the sustainable and eco-friendly utilization of resources. This work demonstrates a novel approach to stripping graphite anodes embedded with Li+ from spent LIBs directly in anhydrous ethanol, which can be utilized as high efficiency cathodes for aluminum-ion batteries (AIBs). Recycled graphite (RG) with foam morphology and crystal structure defects was obtained under the action of ultrasonic peeling and gas generation reaction between residual lithium-graphite interlayer compound and ethanol. The inherent open structure of RG facilitates the intercalation/deintercalation of chloralum anions (AlCl4-) and enhances its AIB cathode performance. The electrochemical measurements reveal that the RG cathode has a specific capacity of 123 mAh center dot g(-1) at a current of 5 A center dot g(-1), which is 1.55 times higher than that of unprocessed natural graphite and 1.25 times higher than that of commercial artificial graphite. Additionally, the RG cathode demonstrated remarkable stability, retaining its high particular capacity of 138.15 mAh center dot g(-1) even through 2000 times at 10 A center dot g(-1) in a low-cost electrolyte consisting of an ionic liquid/urea/AlCl3 mixture. This work offers a novel approach to reusing of graphite anode waste materials from LIBs.
引用
收藏
页码:2161 / 2171
页数:11
相关论文
共 50 条
  • [1] Graphite recycling from spent lithium-ion batteries for fabrication of high-performance aluminum-ion batteries
    Li Wang
    Chao Wang
    Jing-Yi Zhang
    Jia-Cheng Qiu
    Xu-Wang Fu
    Zi-Rui Zhang
    Jian-Min Feng
    Lei Dong
    Cong-Lai Long
    De-Jun Li
    Xiao-Wei Wang
    Bao Zhang
    Jia-Feng Zhang
    Rui-Rui Zhao
    [J]. Rare Metals, 2024, 43 (05) : 2161 - 2171
  • [2] Graphite recycling from spent lithium-ion batteries for fabrication of high-performance aluminum-ion batteries
    Li Wang
    Chao Wang
    Jing-Yi Zhang
    Jia-Cheng Qiu
    Xu-Wang Fu
    Zi-Rui Zhang
    Jian-Min Feng
    Lei Dong
    Cong-Lai Long
    De-Jun Li
    Xiao-Wei Wang
    Bao Zhang
    Jia-Feng Zhang
    Rui-Rui Zhao
    [J]. Rare Metals, 2024, 43 : 2161 - 2171
  • [3] Graphite Recycling from Spent Lithium-Ion Batteries
    Rothermel, Sergej
    Evertz, Marco
    Kasnatscheew, Johannes
    Qi, Xin
    Gruetzke, Martin
    Winter, Martin
    Nowak, Sascha
    [J]. CHEMSUSCHEM, 2016, 9 (24) : 3473 - 3484
  • [4] High-Performance Graphite Recovered from Spent Lithium-Ion Batteries
    Ma, Xiaotu
    Chen, Mengyuan
    Chen, Bin
    Meng, Zifei
    Wang, Yan
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (24) : 19732 - 19738
  • [5] From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries
    Liu, Kui
    Yang, Shenglong
    Luo, Luqin
    Pan, Qichang
    Zhang, Peng
    Huang, Youguo
    Zheng, Fenghua
    Wang, Hongqiang
    Li, Qingyu
    [J]. ELECTROCHIMICA ACTA, 2020, 356
  • [6] A new approach to regenerate high-performance graphite from spent lithium-ion batteries
    Chen, Qinghao
    Huang, Liwu
    Liu, Jianbo
    Luo, Yiteng
    Chen, Yungui
    [J]. CARBON, 2022, 189 : 293 - 304
  • [7] Recycling of Spent Graphite from Lithium-Ion Batteries for Aqueous Zn Dual-Ion Batteries
    Cai, Wenqin
    Zhang, Linghong
    Chen, Kai
    Xiao, Meng
    Chen, Ting
    Dong, Xiaodong
    Pu, Zewei
    Wan, Fang
    Guo, Xiaodong
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (38) : 50897 - 50904
  • [8] Technology for recycling and regenerating graphite from spent lithium-ion batteries
    Yi, Chenxing
    Zhou, Lijie
    Wu, Xiqing
    Sun, Wei
    Yi, Longsheng
    Yang, Yue
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 39 : 37 - 50
  • [9] Review on recycling of graphite anode from spent lithium-ion batteries
    Chu Z.
    Chen Y.
    Li J.
    Sun Q.
    Liu K.
    [J]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2024, 43 (03): : 1524 - 1534
  • [10] Technology for recycling and regenerating graphite from spent lithium-ion batteries
    Chenxing Yi
    Lijie Zhou
    Xiqing Wu
    Wei Sun
    Longsheng Yi
    Yue Yang
    [J]. Chinese Journal of Chemical Engineering, 2021, 39 (11) : 37 - 50