High value-added syngas production by supercritical water gasification of biomass: Optimal reactor design

被引:5
|
作者
Xu, Jialing [1 ,2 ]
Miao, Qing [1 ]
Huang, Chengwei [1 ]
Jin, Hui [2 ]
Liu, Shanke [1 ]
Yu, Lijun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Coll Smart Energy, 665 Jianchuang Rd, Shanghai 200240, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, 28 Xianning West Rd, Xian 710049, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Supercritical water gasification; Biomass; High value-added syngas; Optimal reactor design; HYDROGEN-PRODUCTION; THERMODYNAMIC ANALYSIS; INNOVATIVE SYSTEM; CLEAN SYNGAS; PERFORMANCE; ENERGY; UNIT; COAL;
D O I
10.1016/j.applthermaleng.2023.122068
中图分类号
O414.1 [热力学];
学科分类号
摘要
Supercritical water gasification (SCWG) emerges as a highly encouraging technique for the efficient generation of syngas from biomass feedstock. The performance of the SCWG reactor plays a pivotal role in determining the overall success of the process. This study employs a mathematical modeling and optimization method to design an optimal tubular-type reactor for the SCWG of biomass. First, the reactor is divided into cells, and mathe-matical models are established to describe the reactions within each cell, as well as the mass balances between cells. Afterwards, the optimal reactor design problem is formulated as a non-linear optimization problem, which involves integration of all the individual models along the reactor length. The objective is to maximize the high heating value (HHV) of gaseous products and simultaneously satisfying multiple constraints. Once the problem is solved, the optimal decision variables (i.e., reactor axial fluid temperature profiles, diameter and length) are obtained. Here, two reactor design scenarios are investigated to showcase the adaptability of this optimization method. The obtained outcomes indicate that non-isothermal reactors with a zigzag-shaped temperature profiles are more advantageous than traditional isothermal ones for high value-added syngas production. Specifically, optimal non-isothermal reactors can achieve a remarkable increase of 50.08% (i.e., 26.94 vs 17.95 MJ/kg glycerol) in the HHV of gaseous products compared to isothermal reactors. These findings provide valuable insights on designing efficient SCWG reactors for industrial high value-added syngas production.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] High Quality Syngas Production with Supercritical Biomass Gasification Integrated with a Water-Gas Shift Reactor
    Sarafraz, M. M.
    Safaei, Mohammad Reza
    Jafarian, M.
    Goodarzi, Marjan
    Arjomandi, M.
    ENERGIES, 2019, 12 (13)
  • [2] Review of black liquor supercritical water gasification for hydrogen production with high value-added chemicals recovery
    Qi X.
    Lu L.
    Chen Y.
    Ge Z.
    Guo L.
    Huagong Xuebao/CIESC Journal, 2022, 73 (08): : 3338 - 3354
  • [3] Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen
    Xu, Jialing
    Rong, Siqi
    Sun, Jingli
    Peng, Zhiyong
    Jin, Hui
    Guo, Liejin
    Zhang, Xiang
    Zhou, Teng
    ENERGY, 2022, 244
  • [4] Thermodynamic Analysis of Supercritical Water Gasification of Microalgae Biomass for Hydrogen and Syngas Production
    Freitas, Antonio C. D.
    Guirardello, Reginaldo
    ICHEAP-11: 11TH INTERNATIONAL CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING, PTS 1-4, 2013, 32 : 553 - 558
  • [5] Optimal design of a supercritical water gasification reactor for enhanced desalination
    Li, Xujun
    Chen, Kaicheng
    Qi, Xingang
    Li, Linhu
    Jin, Hui
    Guo, Liejin
    DESALINATION, 2025, 600
  • [6] Solar receiver/reactor for hydrogen production with biomass gasification in supercritical water
    Liao, Bo
    Guo, Liejin
    Lu, Youjun
    Zhang, Ximin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (29) : 13038 - 13044
  • [7] Hydrogen production by biomass gasification in supercritical water with a fluidized bed reactor
    Lu, Y. J.
    Jin, H.
    Guo, L. J.
    Zhang, X. M.
    Cao, C. Q.
    Guo, X.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (21) : 6066 - 6075
  • [8] Process design and evaluation of value-added chemicals production from biomass
    Go, A-Ra
    Ko, Jae Wook
    Lee, Sang Jun
    Kim, Seung Wook
    Han, Sung Ok
    Lee, Jinwon
    Woo, Han Min
    Um, Youngsoon
    Nam, Jaewook
    Park, Chulhwan
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2012, 17 (05) : 1055 - 1061
  • [9] Process design and evaluation of value-added chemicals production from biomass
    A. -Ra Go
    Jae Wook Ko
    Sang Jun Lee
    Seung Wook Kim
    Sung Ok Han
    Jinwon Lee
    Han Min Woo
    Youngsoon Um
    Jaewook Nam
    Chulhwan Park
    Biotechnology and Bioprocess Engineering, 2012, 17 : 1055 - 1061
  • [10] Simulation of biomass char gasification in a downdraft reactor for syngas production
    Ephraim, Augustina
    Pozzobon, Victor
    Louisnard, Olivier
    Doan Pham Minh
    Nzihou, Ange
    Sharrock, Patrick
    AICHE JOURNAL, 2016, 62 (04) : 1079 - 1091