PetaOps/W edge-AI μProcessors: Myth or reality?

被引:0
|
作者
Gomony, Manil Dev [1 ]
de Putter, Floran [1 ]
Gebregiorgis, Anteneh [4 ]
Paulin, Gianna [3 ]
Mei, Linyan [2 ]
Jain, Vikram [2 ]
Hamdioui, Said [4 ]
Sanchez, Victor [1 ]
Grosser, Tobias [5 ]
Geilen, Marc [1 ]
Verhelst, Marian [2 ]
Zenke, Friedemann [8 ]
Gurkaynak, Frank [3 ]
de Bruin, Barry [1 ]
Stuijk, Sander [1 ]
Davidson, Simon [9 ]
De, Sayandip [1 ]
Ghogho, Mounir [10 ]
Jimborean, Alexandra [11 ]
Eissa, Sherif [1 ]
Benini, Luca [3 ]
Soudris, Dimitrios [6 ]
Bishnoi, Rajendra [4 ]
Ainsworth, Sam [5 ]
Corradi, Federico [1 ]
Karrakchou, Ouassim [10 ]
Gueneysu, Tim [7 ]
Corporaal, Henk [1 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
[2] Katholieke Univ Leuven, Leuven, Belgium
[3] ETH, Zurich, Switzerland
[4] Delft Univ Technol, Delft, Netherlands
[5] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[6] Natl Tech Univ Athens, Athens, Greece
[7] Ruhr Univ Bochum, Bochum, Germany
[8] Friedrich Miescher Inst, Basel, Switzerland
[9] Univ Manchester, Manchester, Lancs, England
[10] Int Univ Rabat, Rabat, Morocco
[11] Univ Murcia, Murcia, Spain
关键词
ULP; dynamic DL; edge-AI; SoC; memristor; approximate computing; DSE; compiler stack;
D O I
10.23919/DATE56975.2023.10136926
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rise of deep learning (DL), our world braces for artificial intelligence (AI) in every edge device, creating an urgent need for edge-AI SoCs. This SoC hardware needs to support high throughput, reliable and secure AI processing at ultra-low power (ULP), with a very short time to market. With its strong legacy in edge solutions and open processing platforms, the EU is well-positioned to become a leader in this SoC market. However, this requires AI edge processing to become at least 100 times more energy-efficient, while offering sufficient flexibility and scalability to deal with AI as a fast-moving target. Since the design space of these complex SoCs is huge, advanced tooling is needed to make their design tractable. The CONVOLVE project (currently in Inital stage) addresses these roadblocks. It takes a holistic approach with innovations at all levels of the design hierarchy. Starting with an overview of SOTA DL processing support and our project methodology, this paper presents 8 important design choices largely impacting the energy efficiency and flexibility of DL hardware. Finding good solutions is key to making smart-edge computing a reality.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Dependability of Future Edge-AI Processors: Pandora's Box
    Gomony, Manil Dev
    Gebregiorgis, Anteneh
    Fieback, Moritz
    Geilen, Marc
    Stuijk, Sander
    Richter-Brockmann, Jan
    Bishnoi, Rajendra
    Argo, Sven
    Andradas, Lara Arche
    Guneysu, Tim
    Taouil, Mottaqiallah
    Corporaal, Henk
    Hamdioui, Said
    2023 IEEE EUROPEAN TEST SYMPOSIUM, ETS, 2023,
  • [2] The Future of Consumer Edge-AI Computing
    Laskaridis, Stefanos
    Venieris, Stylianos I.
    Kouris, Alexandros
    Li, Rui
    Lane, Nicholas D.
    IEEE PERVASIVE COMPUTING, 2024, 23 (03) : 21 - 30
  • [3] Edge-AI Platform for Realtime Wildlife Repelling
    Tamburello, Marialaura
    Caruso, Giuseppe
    Giordano, Stefano
    Adami, Davide
    Ojo, Mike
    MELECON 2022 - IEEE Mediterranean Electrotechnical Conference, Proceedings, 2022, : 80 - 84
  • [4] Edge-AI Implementation for Milk Adulteration Detection
    Mhapsekar, Rahul Umesh
    Abraham, Lizy
    O'Shea, Norah
    Davy, Steven
    2022 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2022, : 108 - 113
  • [5] Special Section on Edge-AI for Connected Living
    Hossain, M. Shamim
    Xu, Changsheng
    Bilbao, Josu
    Rahman, Md Abdur
    El Saddik, Abdulmotaleb
    Bin Zayed, Mohamed
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2022, 22 (03)
  • [6] Edge-AI Platform for Realtime Wildlife Repelling
    Tamburello, Marialaura
    Caruso, Giuseppe
    Giordano, Stefano
    Adami, Davide
    Ojo, Mike
    2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022), 2022, : 80 - 84
  • [7] Efficient Edge-AI Application Deployment for FPGAs
    Kalapothas, Stavros
    Flamis, Georgios
    Kitsos, Paris
    INFORMATION, 2022, 13 (06)
  • [8] Functionality Enhanced Memories for Edge-AI Embedded Systems
    Levisse, Alexandre
    Rios, Marco
    Simon, W-A
    Gaillardon, P-E
    Atienza, D.
    2019 19TH NON-VOLATILE MEMORY TECHNOLOGY SYMPOSIUM (NVMTS 2019), 2019,
  • [9] Simulating Distributed Wireless Sensor Networks for Edge-AI
    Prajapati, Ambar
    Banerjee, Bonny
    2022 5TH CONFERENCE ON CLOUD AND INTERNET OF THINGS, CIOT, 2022, : 75 - 82
  • [10] BiGSiD: Bionic Grasping with Edge-AI Slip Detection
    Nassar, Youssef
    Radke, Mario
    Gopal, Atmaraaj
    Knoeller, Tobias
    Weber, Thomas
    Liu, ZhaoHua
    Raetsch, Matthias
    ROBOTICS, COMPUTER VISION AND INTELLIGENT SYSTEMS, ROBOVIS 2024, 2024, 2077 : 152 - 163