A novel particle-particle and particle-wall collision model for superellipsoidal particles

被引:1
|
作者
Wedel, Jana [1 ]
Strakl, Mitja [2 ]
Hribersek, Matjaz [2 ]
Steinmann, Paul [1 ,3 ]
Ravnik, Jure [2 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Appl Mech, Egerlandstr 5, D-91058 Erlangen, Germany
[2] Univ Maribor, Fac Mech Engn, Smetanova 17, Maribor 2000, Slovenia
[3] Univ Glasgow, Glasgow Computat Engn Ctr, Glasgow, Scotland
关键词
Multiphase flow; Lagrangian particle tracking; Superellipsoid; Collision; Friction; DISCRETE ELEMENT SIMULATION; CONTACT DETECTION; SHAPE REPRESENTATION; SEDIMENT TRANSPORT; SPHERE; ELLIPSOIDS; INTERFACE;
D O I
10.1007/s40571-023-00618-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the framework of computational studies of particulate multiphase flow systems, either dilute or dense, particle-particle as well as particle-wall collisions need to be considered, which in the case of nonspherical particle shapes still presents a computational challenge. In this study, we present an efficient numerical implementation of a novel superellipsoidal particle collision model that can be used in general fluid flows. The superellipsoid shape formulation can be viewed as an extension of spherical or ellipsoidal shapes and can be used to represent spherical, ellipsoidal, cylindrical, diamond-like and cubic particles by varying solely five shape parameters. In this context, we present a fast, stable Newton-Raphson-based method for modeling frictional collisions of nonspherical superellipsoidal particles, and demonstrate the performance of our algorithms.
引用
收藏
页码:211 / 234
页数:24
相关论文
共 50 条
  • [1] A novel particle–particle and particle–wall collision model for superellipsoidal particles
    Jana Wedel
    Mitja Štrakl
    Matjaž Hriberšek
    Paul Steinmann
    Jure Ravnik
    [J]. Computational Particle Mechanics, 2024, 11 : 211 - 234
  • [2] Deliquescence and Efflorescence of Hygroscopic Salt Particles in Particle-Wall and Particle-Particle Contacts
    Horst, David
    Zhang, Qian
    Schmidt, Eberhard
    [J]. CHEMIE INGENIEUR TECHNIK, 2019, 91 (1-2) : 46 - 54
  • [3] Fictitious domain method combined with the DEM for studying particle-particle/particle-wall collision in fluid
    Ma, Shengli
    Wei, Zhengying
    Chen, Xueli
    Lin, Qiyin
    [J]. PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2019, 19 (02): : 80 - 97
  • [4] CHARACTERIZING GAS FILM CONDUCTION FOR PARTICLE-PARTICLE AND PARTICLE-WALL COLLISIONS
    Hobbs, Andrew M.
    Ooi, Jin Y.
    [J]. V INTERNATIONAL CONFERENCE ON PARTICLE-BASED METHODS - FUNDAMENTALS AND APPLICATIONS (PARTICLES 2017), 2017, : 755 - 766
  • [5] Numerical investigation of particle-particle and particle-wall collisions in a viscous fluid
    Ardekani, A. M.
    Rangel, R. H.
    [J]. JOURNAL OF FLUID MECHANICS, 2008, 596 : 437 - 466
  • [6] PARTICLE DISPERSION SIMULATION IN TURBULENT FLOW DUE TO PARTICLE-PARTICLE AND PARTICLE-WALL COLLISIONS
    Lin, J-H.
    Chang, K-C.
    [J]. JOURNAL OF MECHANICS, 2016, 32 (02) : 237 - 244
  • [7] Measurement and interpretation of particle-particle and particle-wall interactions in levitated colloidal ensembles
    Wu, HJ
    Pangburn, TO
    Beckham, RE
    Bevan, MA
    [J]. LANGMUIR, 2005, 21 (22) : 9879 - 9888
  • [8] Some numerical experiments on particle-particle and particle-wall interactions under compensated gravity
    Nirschl, H
    Delgado, A
    Denk, V
    [J]. MICROGRAVITY SCIENCE AND TECHNOLOGY, 1996, 9 (04) : 264 - 268
  • [9] Microscopic Analysis of Particle-Wall Collision
    Kobayakawa, Murino
    Fujimoto, Ayumi
    Yasuda, Masatoshi
    Matsusaka, Shuji
    [J]. KAGAKU KOGAKU RONBUNSHU, 2015, 41 (05) : 281 - 284
  • [10] Particle-wall collision in a viscoelastic fluid
    Ardekani, A. M.
    Joseph, D. D.
    Dunn-Rankin, D.
    Rangel, R. H.
    [J]. JOURNAL OF FLUID MECHANICS, 2009, 633 : 475 - 483