In order to improve the laser wake guidance distance and the detection signal-to-noise ratio, it is of great theoretical and practical value to study the backscattering characteristics of bubble targets with different distances, bubble sizes, bubble number densities, and bubble layer thicknesses. The laser backscattering characteristics of ship wake bubble targets with different distances, scales, numerical densities, and thicknesses are studied using Monte Carlo simulations and indoor experiments. When the bubble density is 10(2)-10(8) m(-3) and the thickness of the bubble layer is greater than 0.05 m, there is always an echo signal for both large-and small-scale bubbles. When the thickness of the bubble layer is less than 0.05 m, no echo signal is detected. At this situation, the thickness of the bubble layer is the greatest impact factor on the backward scattering of bubbles. When the bubble number density is 10(9) m(-3) and the thickness of the bubble layer is below 0.05 m, the pulse width of the large-scale bubble echo signal widens. The number density and scale characteristics of the bubbles have the greatest impact on the backscattering of bubbles. A laser backscattering measurement system at the scale of typical underwater bubbles is built to verify the influence of different ship wake bubble characteristics on the laser backscattering detection system, which can provide support for the ship wake laser detection project.