Digital holographic interferometry for diagnosing the density profile of laser-produced collisionless shock

被引:1
|
作者
Si, Hua-chong [1 ]
Tang, Hui-bo [2 ,3 ,4 ,5 ]
Liu, Wei [1 ]
Yuan, Peng [1 ,2 ]
Hu, Guang-yue [1 ,2 ,4 ,5 ]
机构
[1] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Geospace Environm, Hefei, Peoples R China
[3] Harbin Inst Technol, Sch Phys, Harbin, Peoples R China
[4] Chinese Acad Sci, State Key Lab High Field Laser Phys, Shanghai, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, CAS Ctr Excellence Ultraintense Laser Sci, Shanghai, Peoples R China
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2023年 / 94卷 / 08期
基金
中国国家自然科学基金;
关键词
PLASMA-EXPERIMENTS; RECONSTRUCTION;
D O I
10.1063/5.0137407
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A digital holographic interferometry based on Fresnel biprism has been developed to measure the electron density profile of laser-produced collisionless shocks in laboratory, which used the Fourier transform method to solve the wrapped phase. The discontinuous surfaces of shocks will produce the break and split of the interference fringes, which cannot be processed by the conventional path-following phase unwrapping algorithm when reconstructing the real phase of the plasma. Therefore, we used a least-squares method to extract the real phase, which is proportional to the line-integrated electron density. We obtained fine density profiles of collisionless shocks in the line-integrated density region around 10(18) cm(-2) with a density resolution of 3.38 x 10(16) cm(-2). The shock structure is in well agreement with that measured by the dark-field schlieren methods and that predicted by shock jump condition. Synthetic holograms are used to confirm the effectiveness of our algorithm, and it is shown that correct results can still be obtained even if part of the diagnostic light is refracted out of the optical system by the shock.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] HOLOGRAPHIC INTERFEROMETRY OF LASER-PRODUCED PLASMAS
    ATTWOOD, D
    COLEMAN, L
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (10): : 1342 - 1342
  • [2] COLLISIONLESS SHOCK IN A LASER-PRODUCED ABLATING PLASMA
    BELL, AR
    CHOI, P
    DANGOR, AE
    WILLI, O
    BASSETT, DA
    HOOKER, CJ
    PHYSICAL REVIEW A, 1988, 38 (03): : 1363 - 1369
  • [3] HOLOGRAPHIC INTERFEROMETRY OF LASER-PRODUCED PLASMAS AT 3547 A
    ATTWOOD, DT
    COLEMAN, LW
    SWEENEY, DW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (09): : 910 - 910
  • [4] HOLOGRAPHIC INTERFEROMETRY OF COLLIDING LASER-PRODUCED PLASMAS
    RUMSBY, PT
    MICHAELIS, MM
    PHYSICS LETTERS A, 1974, A 48 (01) : 11 - 12
  • [5] Time Evolution of Collisionless Shock in Counterstreaming Laser-Produced Plasmas
    Kuramitsu, Y.
    Sakawa, Y.
    Morita, T.
    Gregory, C. D.
    Waugh, J. N.
    Dono, S.
    Aoki, H.
    Tanji, H.
    Koenig, M.
    Woolsey, N.
    Takabe, H.
    PHYSICAL REVIEW LETTERS, 2011, 106 (17)
  • [6] Digital holographic measurement of electron temperature and density of laser-produced plasmas with an ultrashort laser pulse
    Li, Xin-yan
    Yuan, Peng
    Liu, Wei
    Tan, Wei-Qiang
    Liu, Yao-Yuan
    Zheng, Jian
    APPLIED OPTICS, 2023, 62 (17) : 4390 - 4398
  • [7] Accelerating shock waves in a laser-produced density gradient
    Teyssier, R
    Ryutov, D
    Remington, B
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2000, 127 (02): : 503 - 508
  • [8] PROFILE MODIFICATIONS AT CRITICAL DENSITY OF LASER-PRODUCED PLASMAS
    SHUKLA, PK
    SPATSCHEK, KH
    JOURNAL OF PLASMA PHYSICS, 1978, 19 (JUN) : 387 - 403
  • [9] CALCULATION OF THE DENSITY PROFILE OF AN EXPANDED LASER-PRODUCED PLASMA
    LADRACH, P
    BALMER, J
    HELVETICA PHYSICA ACTA, 1981, 54 (04): : 617 - 617
  • [10] Dynamics and density distribution of laser-produced plasma using optical interferometry
    Cao, S. Q.
    Su, M. G.
    Jiao, Z. H.
    Min, Q.
    Sun, D. X.
    Ma, P. P.
    Wang, K. P.
    Dong, C. Z.
    PHYSICS OF PLASMAS, 2018, 25 (06)