Full-Resolution Lung Nodule Localization From Chest X-Ray Images Using Residual Encoder-Decoder Networks

被引:0
|
作者
Horry, Michael J. [1 ]
Chakraborty, Subrata [1 ,2 ,3 ]
Pradhan, Biswajeet [1 ,4 ]
Paul, Manoranjan [5 ]
Zhu, Jing [6 ]
Barua, Prabal Datta [2 ,7 ,8 ]
Mir, Hasan Saeed [9 ]
Chen, Fang [10 ]
Zhou, Jianlong [10 ]
Acharya, U. Rajendra [11 ]
机构
[1] Univ Technol Sydney, Fac Engn & IT, Sch Civil & Environm Engn, Ctr Adv Modeling & Geospatial Syst CAMGIS, Sydney, NSW 2007, Australia
[2] Univ New England, Fac Sci Agr Business & Law, Sch Sci & Technol, Armidale, NSW 2007, Australia
[3] Griffith Univ, Griffith Business Sch, Brisbane, Qld 4111, Australia
[4] Univ Kebangsaan Malaysia, Inst Climate Change, Earth Observat Ctr, Bangi 43600, Selangor, Malaysia
[5] Charles Sturt Univ, Sch Comp Math & Engn, Machine Vis & Digital Hlth MaViDH, Bathurst, NSW 2795, Australia
[6] Westmead Hosp, Dept Radiol, Westmead, NSW 2145, Australia
[7] Cogninet Australia, Cogninet Brain Team, Surry Hills, NSW 2010, Australia
[8] Univ Southern Queensland, Fac Business Educ Law & Arts, Sch Business Informat Syst, Toowoomba, Qld 4350, Australia
[9] Amer Univ Sharjah, Dept Elect Engn, Sharjah, U Arab Emirates
[10] Univ Technol Sydney, Data Sci Inst, Ultimo, NSW 2351, Australia
[11] Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Qld 4300, Australia
关键词
Chest X-ray; lung nodule; deep learning; segmentation; generalization; CANCER; DIAGNOSIS; OUTCOMES;
D O I
10.1109/ACCESS.2023.3343451
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung cancer is the leading cause of cancer death, and early diagnosis is associated with a positive prognosis. Chest X-ray (CXR) provides an inexpensive imaging mode for lung cancer diagnosis. Computer vision algorithms have previously been proposed to assist human radiologists in this task; however, leading studies use down-sampled images and computationally expensive methods with unproven generalization. In contrast, this study localizes lung nodules from CXR images using efficient encoder-decoder neural networks that have been crafted to process full resolution input images, thereby avoiding signal loss resulting from down-sampling. Encoder-decoder networks are trained and tested using the Japanese Society of Radiological Technology dataset. The networks are used to localize lung nodules from an independent CXR dataset. These experiments allow for the determination of the optimal network depth, image resolution, and pre-processing pipeline for generalized lung nodule localization. We find that more subtle nodules are detected in earlier training epochs. Therefore, we propose a novel self-ensemble model from three consecutive epochs centered on the validation optimum. This ensemble achieved a sensitivity of 85% in 10-fold internal testing with false positives of 8 per image. A sensitivity of 81% is achieved at a false positive rate of 6 following morphological false positive reduction. This result is comparable to more computationally complex systems, but with a sub-second inference time that is faster than other methods presented in the literature. The proposed algorithm achieved excellent generalization results against a challenging external dataset with a sensitivity of 77% at a false positive rate of 7.6.
引用
收藏
页码:143016 / 143036
页数:21
相关论文
共 50 条
  • [1] Lung Field Segmentation in Chest X-ray Images Using Superpixel Resizing and Encoder-Decoder Segmentation Networks
    Lee, Chien-Cheng
    So, Edmund Cheung
    Saidy, Lamin
    Wang, Min-Ju
    BIOENGINEERING-BASEL, 2022, 9 (08):
  • [2] EfficientUNet: Modified encoder-decoder architecture for the lung segmentation in chest x-ray images
    Agrawal, Tarun
    Choudhary, Prakash
    EXPERT SYSTEMS, 2022, 39 (08)
  • [3] Chest X-Ray Image Segmentation Using Encoder-Decoder Convolutional Network
    Saidy, Lamin
    Lee, Chien-Cheng
    2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN (ICCE-TW), 2018,
  • [4] A deep learning based dual encoder-decoder framework for anatomical structure segmentation in chest X-ray images
    Ullah, Ihsan
    Ali, Farman
    Shah, Babar
    El-Sappagh, Shaker
    Abuhmed, Tamer
    Park, Sang Hyun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Automated Maxillofacial Segmentation in Panoramic Dental X-Ray Images Using an Efficient Encoder-Decoder Network
    Kong, Zhengmin
    Xiong, Feng
    Zhang, Chenggang
    Fu, Zhuolin
    Zhang, Maoqi
    Weng, Jingxin
    Fan, Mingzhe
    IEEE ACCESS, 2020, 8 : 207822 - 207833
  • [6] Investigation on Encoder-Decoder Networks for Segmentation of Very Degraded X-Ray CT Tomograms
    Dulau I.
    Beurton-Aimar M.
    Hwu Y.
    Recur B.
    Computer Science Research Notes, 2023, 31 (1-2): : 11 - 19
  • [7] A Hybrid Lung Nodule Detection Scheme on Chest X-ray Images
    Orban, G.
    Horvath, G.
    5TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, PTS 1 AND 2, 2012, 37 : 603 - 606
  • [8] Encoder-decoder models for chest X-ray report generation perform no better than unconditioned baselines
    Babar, Zaheer
    van Laarhoven, Twan
    Marchiori, Elena
    PLOS ONE, 2021, 16 (11):
  • [9] Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection
    Li, Xuechen
    Shen, Linlin
    Xie, Xinpeng
    Huang, Shiyun
    Xie, Zhien
    Hong, Xian
    Yu, Juan
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 103
  • [10] Noise reduction in X-ray photon correlation spectroscopy with convolutional neural networks encoder-decoder models
    Konstantinova, Tatiana
    Wiegart, Lutz
    Rakitin, Maksim
    DeGennaro, Anthony M.
    Barbour, Andi M.
    SCIENTIFIC REPORTS, 2021, 11 (01)