Application program interface for automatic segmentation of retinal layers and fluids in Optical Coherence Tomography - Neovascular Age related Macular degeneration retinal images using deep learning models

被引:0
|
作者
Prabha, A. Jeya [1 ]
Fathimal, M. Sameera [1 ]
Meghana, G. R. [2 ]
Kirubha, S. P. Angeline [1 ,3 ]
机构
[1] SRM Inst Sci & Technol, Dept Biomed Engn, Kattankulathur, Tamil Nadu, India
[2] SRM Med Coll Hosp & Res Ctr, Dept Ophthalmol, Kattankulathur, Tamil Nadu, India
[3] SRM Inst Sci & Technol, Dept Biomed Engn, Kattankulathur 603203, Tamil Nadu, India
关键词
AMD; deep learning; OCT; retinal fluids; retinal layers; EDEMA;
D O I
10.1002/ima.23002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optical coherence tomography is a non-invasive imaging technique that provides micrometer-resolution images of retinal structures. These images can assist in identifying changes under the retina's surface, such as edema. This study proposes a novel deep learning model AR U-Net++ for segmenting retinal layers and fluids. The four retinal layers ILM (Internal Limiting Membrane), IPL (Inner Plexiform Layer), RPE (Retinal Pigment Epithelium), BM (Bruch Membrane), and IRF (Intra Retinal Fluid), SRF (Sub Retinal Fluid), and PED (Pigment Epithelial Detachment) are segmented using AR U-Net++. The proposed architecture AR U-Net++ achieves better accuracy (99.67%), mean IoU (0.84), and dice coefficient (0.94) than the existing models of U-Net, AR U-Net, and AR W-Net. The novelty of the suggested model AR U-Net++ is to identify the exact location and depth of the retinal fluid in between the retinal layers and generating reports that aids the clinicians in the diagnosis of Age related Macular Degeneration.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Optical coherence tomography segmentation of retinal fluids using deep learning
    Lu, Huanxiang
    Maunz, Andreas
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [2] Prediction of imminent conversion to neovascular age-related macular degeneration using deep learning and optical coherence tomography images
    Liu, T. Y. Alvin
    Liu, Yuxuan
    Jones, Craig
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [3] Deep learning (DL) to segment retinal layer disruption on optical coherence tomography (OCT) in neovascular age-related macular degeneration (nAMD)
    Li, Yun
    Lu, Huanxiang
    Albrecht, Thomas
    Maunz, Andreas
    Neubert, Ales
    Benmansour, Fethallah
    Gomariz, Alvaro
    Luu, Jennifer
    Ferrara, Daniela
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [4] Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning
    Liu, Xiaoming
    Wang, Shaocheng
    Zhang, Ying
    Liu, Dong
    Hu, Wei
    [J]. NEUROCOMPUTING, 2021, 452 : 576 - 591
  • [5] Automatic segmentation of age-related macular degeneration in retinal fundus images
    Koese, Cemal
    Sevik, Ugur
    Gencalioglu, Okyay
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2008, 38 (05) : 611 - 619
  • [6] Deep Learning for Segmentation of Optic Disc and Retinal Layers in Peripapillary Optical Coherence Tomography Images
    Rivas Vazquez, Estefania
    Barreira Rodriguez, Maria Noelia
    Lopez-Varela, Emilio
    Penedo, Manuel G.
    [J]. FIFTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2022, 2023, 12701
  • [7] Joint Segmentation and Uncertainty Visualization of Retinal Layers in Optical Coherence Tomography Images Using Bayesian Deep Learning
    Sedai, Suman
    Antony, Bhavna
    Mahapatra, Dwarikanath
    Garnavi, Rahil
    [J]. COMPUTATIONAL PATHOLOGY AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2018, 11039 : 219 - 227
  • [8] Automated segmentation of choroidal neovascularization on optical coherence tomography angiography images of neovascular age-related macular degeneration patients based on deep learning
    Wei Feng
    Meihan Duan
    Bingjie Wang
    Yu Du
    Yiran Zhao
    Bin Wang
    Lin Zhao
    Zongyuan Ge
    Yuntao Hu
    [J]. Journal of Big Data, 10
  • [9] Automated segmentation of choroidal neovascularization on optical coherence tomography angiography images of neovascular age-related macular degeneration patients based on deep learning
    Feng, Wei
    Duan, Meihan
    Wang, Bingjie
    Du, Yu
    Zhao, Yiran
    Wang, Bin
    Zhao, Lin
    Ge, Zongyuan
    Hu, Yuntao
    [J]. JOURNAL OF BIG DATA, 2023, 10 (01)
  • [10] Automatic retinal layer segmentation of visible-light optical coherence tomography images using deep learning
    Gopal, Bryan Dev
    Zhang, Tingwei
    Norcia, Anthony
    Goldberg, Jeffrey L.
    Dubra, Alfredo
    Zhang, Hao
    Soetikno, Brian
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)