Grating-incoupled waveguide-enhanced Raman sensor

被引:3
|
作者
Ettabib, Mohamed A. [1 ]
Bowden, Bethany M. [2 ]
Liu, Zhen [1 ]
Marti, Almudena [2 ]
Churchill, Glenn M. [1 ]
Gates, James C. [1 ]
Zervas, Michalis N. [1 ]
Bartlett, Philip N. [2 ]
Wilkinson, James S. [1 ]
机构
[1] Univ Southampton, Zepler Inst Photon & Nanoelect, Southampton, England
[2] Univ Southampton, Sch Chem, Southampton, England
来源
PLOS ONE | 2023年 / 18卷 / 08期
基金
英国工程与自然科学研究理事会;
关键词
TANTALUM OXIDE; SPECTROSCOPY; INTENSITIES; FREQUENCIES; MONOLAYERS;
D O I
10.1371/journal.pone.0284058
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report a waveguide-enhanced Raman spectroscopy (WERS) platform with alignment-tolerant under-chip grating input coupling. The demonstration is based on a 100-nm thick planar (slab) tantalum pentoxide (Ta2O5) waveguide and the use of benzyl alcohol (BnOH) and its deuterated form (d7- BnOH) as reference analytes. The use of grating couplers simplifies the WERS system by providing improved translational alignment tolerance, important for disposable chips, as well as contributing to improved Raman conversion efficiency. The use of non-volatile, non-toxic BnOH and d7-BnOH as chemical analytes results in easily observable shifts in the Raman vibration lines between the two forms, making them good candidates for calibrating Raman systems. The design and fabrication of the waveguide and grating couplers are described, and a discussion of further potential improvements in performance is presented.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Optimized design for grating-coupled waveguide-enhanced Raman spectroscopy
    Ettabib, Mohamed A.
    Liu, Zhen
    Zervas, Michalis N.
    Wilkinson, James S.
    OPTICS EXPRESS, 2020, 28 (25) : 37226 - 37235
  • [2] Waveguide-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 4
  • [3] Waveguide-enhanced Raman spectroscopy
    Ettabib, Mohamed A.
    Liu, Zhen
    Zervas, Michalis N.
    Bartlett, Philip N.
    Wilkinson, James S.
    NATURE REVIEWS METHODS PRIMERS, 2024, 4 (01):
  • [4] A packaged, fiber-coupled waveguide-enhanced Raman spectroscopic sensor
    Kita, Derek M.
    Michon, Jerome
    Hu, Juejun
    OPTICS EXPRESS, 2020, 28 (10) : 14963 - 14972
  • [5] Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy
    Wang, Zilong
    Zervas, Michalis N.
    Bartlett, Philip N.
    Wilkinson, James S.
    OPTICS LETTERS, 2016, 41 (17) : 4146 - 4149
  • [6] On-chip cascaded plasmonic-dielectric grating slot waveguide-enhanced Raman spectroscopy
    Zhao, Dong
    Fu, Geliang
    Dou, Yetian
    Tu, Chaoran
    Tong, Jiaying
    Li, Shiyu
    Jiang, Min
    OPTICS AND LASER TECHNOLOGY, 2025, 180
  • [7] Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy
    Wang, Zilong
    Pearce, Stuart J.
    Lin, Yung-Chun
    Zervas, Michalis N.
    Bartlett, Philip N.
    Wilkinson, James S.
    APPLIED SPECTROSCOPY, 2016, 70 (08) : 1384 - 1391
  • [8] Foundry-based waveguide-enhanced Raman spectroscopy in the visible
    Tyndall, Nathan F.
    Emmons, Erik D.
    Pruessner, Marcel W.
    Rabinovich, William S.
    Wilcox, Phillip G.
    Tripathi, Ashish
    Guicheteau, Jason A.
    Stievater, Todd H.
    OPTICS EXPRESS, 2024, 32 (04) : 4745 - 4755
  • [9] Waveguide-Enhanced Raman Spectroscopy for Field Detection of Threat Materials
    Emmons, Erik D.
    Wilcox, Phillip G.
    Roese, Erik S.
    Tripathi, Ashish
    Guicheteau, Jason A.
    Hung, Kevin C.
    Miller, Benjamin L.
    Luta, Ethan P.
    Yates, Matthew Z.
    Tyndall, Nathan F.
    Stievater, Todd H.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXVI, 2022, 12004
  • [10] Plasmonic grating for circularly polarized outcoupling of waveguide-enhanced spontaneous emission
    Fradkin, Ilia M.
    Demenev, Andrey A.
    Kulakovskii, Vladimir D.
    Antonov, Vladimir N.
    Gippius, Nikolay A.
    APPLIED PHYSICS LETTERS, 2022, 120 (17)