Calderon-Zygmund estimates for nonlinear parabolic equations with matrix weights on nonsmooth domains

被引:1
|
作者
Byun, Sun -Sig [1 ]
Cho, Yumi [2 ]
机构
[1] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Matrix weight; Gradient estimate; Measurable nonlinearity; BMO; Reifenberg domain; HIGHER INTEGRABILITY; ELLIPTIC-EQUATIONS; WEAK SOLUTIONS; REGULARITY; DEGENERATE; SYSTEMS; INEQUALITIES;
D O I
10.1016/j.jde.2023.06.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A wider class of nonlinear parabolic equations with degenerate/singular matrix weights is studied for Calderon-Zygmund type estimates of weak solutions in the setting of weighted Sobolev spaces. Minimal regularity assumptions on the associated nonlinearities as well as weights are investigated for such classical estimates.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:231 / 259
页数:29
相关论文
共 50 条