Lifespan estimates for critical semilinear wave equations and scale invariant damped wave equations in exterior domain in high dimensions

被引:0
|
作者
Yao, Jiangyan [1 ]
Han, Wei [2 ]
Yang, Jie [1 ]
机构
[1] North Univ China, Data Sci & Technol, Taiyuan 030051, Shanxi, Peoples R China
[2] North Univ China, Dept Math, Taiyuan 030051, Shanxi, Peoples R China
关键词
Critical semilinear wave equations; Scale invariant damped wave equations; Lifespan estimate; Exterior domain; Maximum principle; STAR-SHAPED OBSTACLE; LONG-TIME EXISTENCE; BLOW-UP; GLOBAL EXISTENCE; STRAUSS-CONJECTURE; NONEXISTENCE; EXPONENT;
D O I
10.1007/s00028-022-00857-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider semilinear wave equations with critical power and scale invariant damping term 2(1 + t)(-1)u(t) in exterior domain in high dimensions (n >= 3). Upper bound lifespan estimates of solution are established by employing test function method. The novelty is that we show the asymptotic behavior of the test function by using maximum principle. Comparing with the method utilized in Sobajima (J Math Anal Appl 484:123667, 2019), we avoid using the modified Bessel functions to construct the test function. It is worth to mention that the method employed in this paper is also different from the one in Lai (Nonlinear Anal 125: 550-560, 2015) and Lai (Nonlinear Anal. 143: 89-104, 2016).
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Lifespan estimates for critical semilinear wave equations and scale invariant damped wave equations in exterior domain in high dimensions
    Jiangyan Yao
    Wei Han
    Jie Yang
    Journal of Evolution Equations, 2023, 23
  • [2] Lifespan estimates of solutions to semilinear wave equations with damping term on the exterior domain
    Su, Yeqin
    Lai, Shaoyong
    Ming, Sen
    Fan, Xiongmei
    APPLICABLE ANALYSIS, 2023, 102 (12) : 3398 - 3417
  • [3] Nonexistence of global solutions to critical semilinear wave equations in exterior domain in high dimensions
    Lai, Ning-An
    Zhou, Yi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 143 : 89 - 104
  • [4] LOWER BOUND OF THE LIFESPAN OF SOLUTIONS TO SEMILINEAR WAVE EQUATIONS IN AN EXTERIOR DOMAIN
    Katayama, Soichiro
    Kubo, Hideo
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2013, 10 (02) : 199 - 234
  • [5] Sharp lifespan estimates for the weakly coupled system of semilinear damped wave equations in the critical case
    Wenhui Chen
    Tuan Anh Dao
    Mathematische Annalen, 2023, 385 : 101 - 130
  • [6] Sharp lifespan estimates for the weakly coupled system of semilinear damped wave equations in the critical case
    Chen, Wenhui
    Tuan Anh Dao
    MATHEMATISCHE ANNALEN, 2023, 385 (1-2) : 101 - 130
  • [7] Lifespan estimates for semilinear damped wave equation in a two-dimensional exterior domain
    Ikeda, Masahiro
    Sobajima, Motohiro
    Taniguchi, Koichi
    Wakasugi, Yuta
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (09)
  • [8] The lifespan of solutions of semilinear wave equations with the scale-invariant damping in two space dimensions
    Imai, Takuto
    Kato, Masakazu
    Takamura, Hiroyuki
    Wakasa, Kyouhei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) : 8387 - 8424
  • [9] Fujita modified exponent for scale invariant damped semilinear wave equations
    Felisia Angela Chiarello
    Giovanni Girardi
    Sandra Lucente
    Journal of Evolution Equations, 2021, 21 : 2735 - 2748
  • [10] Fujita modified exponent for scale invariant damped semilinear wave equations
    Chiarello, Felisia Angela
    Girardi, Giovanni
    Lucente, Sandra
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 2735 - 2748