Efficient space-time adaptivity for parabolic evolution equations using wavelets in time and finite elements in space

被引:0
|
作者
van Venetie, Raymond [1 ]
Westerdiep, Jan [1 ]
机构
[1] Univ Amsterdam, Korteweg De Vries Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
关键词
adaptive approximation; optimal computational complexity; space-time variational formulations of parabolic PDEs; sparse grids; tensor-product approximation; CONVERGENCE; STABILITY;
D O I
10.1002/nla.2457
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considering the space-time adaptive method for parabolic evolution equations we introduced in Stevenson et al., this work discusses an implementation of the method in which every step is of linear complexity. Exploiting the tensor-product structure of the space-time cylinder, the method allows for a family of trial spaces given as spans of wavelets-in-time tensorized with finite element spaces-in-space. On spaces whose bases are indexed by double-trees, we derive an algorithm that applies the resulting bilinear forms in linear complexity. We provide extensive numerical experiments to demonstrate the linear runtime of the resulting adaptive loop.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] ADAPTIVITY WITH DYNAMIC MESHES FOR SPACE-TIME FINITE ELEMENT DISCRETIZATIONS OF PARABOLIC EQUATIONS
    Schmich, Michael
    Vexler, Boris
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (01): : 369 - 393
  • [2] Space-time least-squares finite elements for parabolic equations
    Fuhrer, Thomas
    Karkulik, Michael
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 92 : 27 - 36
  • [3] Space-time finite element methods for parabolic evolution equations: discretization, a posteriori error estimation, adaptivity and solution
    Steinbach, Olaf
    Yang, Huidong
    SPACE-TIME METHODS: APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS, 2019, 25 : 207 - 248
  • [4] Stability of sparse space-time finite element discretizations of linear parabolic evolution equations
    Andreev, Roman
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 242 - 260
  • [5] Implicit solution of hyperbolic equations with space-time adaptivity
    Lötstedt, P
    Söderberg, S
    Ramage, A
    Hemmingsson-Frändén, L
    BIT, 2002, 42 (01): : 134 - 158
  • [6] Implicit Solution of Hyperbolic Equations with Space-Time Adaptivity
    Per Lötstedt
    Stefan Söderberg
    Alison Ramage
    Lina Hemmingsson-Frändén
    BIT Numerical Mathematics, 2002, 42 : 134 - 158
  • [7] Space-time adaptive finite elements for nonlocal parabolic variational inequalities
    Gimperlein, Heiko
    Stocek, Jakub
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 352 : 137 - 171
  • [8] A stable space-time finite element method for parabolic evolution problems
    Moore, Stephen Edward
    CALCOLO, 2018, 55 (02)
  • [9] UNSTRUCTURED SPACE-TIME FINITE ELEMENT METHODS FOR OPTIMAL CONTROL OF PARABOLIC EQUATIONS
    Langer, Ulrich
    Steinbach, Olaf
    Troltzsch, Fredi
    Yang, Huidong
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A744 - A771
  • [10] A SPACE-TIME MULTISCALE MORTAR MIXED FINITE ELEMENT METHOD FOR PARABOLIC EQUATIONS
    Jayadharan, Manu
    Kern, Michel
    Vohrali, Martin
    Yotov, Ivan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (02) : 675 - 706