BLOW-UP FOR A FULLY FRACTIONAL HEAT EQUATION

被引:1
|
作者
Ferreira, Raul [1 ]
De Pablo, Arturo [2 ,3 ]
机构
[1] Univ Complutense Madrid, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[2] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[3] UAM, Inst Ciencias Matemat, UCM, UC3M,ICMAT,CSIC, Nicolas Cabrera 13-15, Madrid 28049, Spain
关键词
Fully fractional heat equation; master equation; blow-up; Fujita exponent; PARABOLIC EQUATIONS; CRITICAL EXPONENTS; EXTENSION PROBLEM; NONEXISTENCE; REGULARITY; DIFFUSION; EXISTENCE; THEOREMS;
D O I
10.3934/dcds.2023116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and behaviour of blowing-up solutions to the fully fractional heat equation Mu = u(p), x is an element of R-N, 0< t < Twith p > 0, where M is a nonlocal operator given by a space-time kernel M(x, t) = cN ,at- N2 -1-ae- (|x|2/)4t 1{t>0}, 0 < sigma < 1. This operator coincides with the fractional power of the heat operator, M = (partial derivative t-Delta)a defined through semigroup theory. We characterize the global existence exponent p0 = 1 and the Fujita exponent p* =1+ 2 sigma/ N+2(1-sigma) . We also study the rate at which the blowing-up solutions below p* tend to infinity, IIu(<middle dot>, t)II infinity similar to(T - t) sigma p-1 .
引用
收藏
页码:569 / 584
页数:16
相关论文
共 50 条
  • [1] BLOW-UP RATES FOR A FRACTIONAL HEAT EQUATION
    Ferreira, R.
    de Pablo, A.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (05) : 2011 - 2018
  • [2] Finite time blow-up for the fractional critical heat equation in Rn
    Chen, Guoyuan
    Wei, Juncheng
    Zhou, Yifu
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193 (193)
  • [3] Infinite time blow-up for the fractional heat equation with critical exponent
    Monica Musso
    Yannick Sire
    Juncheng Wei
    Youquan Zheng
    Yifu Zhou
    [J]. Mathematische Annalen, 2019, 375 : 361 - 424
  • [4] Infinite time blow-up for the fractional heat equation with critical exponent
    Musso, Monica
    Sire, Yannick
    Wei, Juncheng
    Zheng, Youquan
    Zhou, Yifu
    [J]. MATHEMATISCHE ANNALEN, 2019, 375 (1-2) : 361 - 424
  • [5] Blow-up on the boundary for the heat equation
    Marek Fila
    Ján Filo
    Gary M. Lieberman
    [J]. Calculus of Variations and Partial Differential Equations, 2000, 10 : 85 - 99
  • [6] Blow-up on the boundary for the heat equation
    Fila, M
    Filo, J
    Lieberman, GM
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 10 (01) : 85 - 99
  • [7] Blow-up phenomena for a nonlinear time fractional heat equation in an exterior domain
    Samet, Bessem
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1380 - 1385
  • [8] Numerical blow-up for a nonlinear heat equation
    Firmin K. N’Gohisse
    Théodore K. Boni
    [J]. Acta Mathematica Sinica, English Series, 2011, 27 : 845 - 862
  • [9] Numerical blow-up for a nonlinear heat equation
    N'Gohisse, Firmin K.
    Boni, Theodore K.
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (05) : 845 - 862
  • [10] On the blow-up solutions for the nonlinear fractional Schrodinger equation
    Zhu, Shihui
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) : 1506 - 1531