Complex Lp-intersection bodies

被引:0
|
作者
Ellmeyer, Simon
Hofstaetter, Georg C. [1 ,2 ]
机构
[1] TU Wien, Inst Discrete Math & Geometry, A-1040 Vienna, Austria
[2] Friedrich Schiller Univ Jena, Inst Math, D-07743 Jena, Germany
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
Intersection bodies; Dual L-p-Brunn-Minkowski theory; Pseudo-convex bodies; Intersection inequality; BUSEMANN-PETTY PROBLEM; SECTIONS;
D O I
10.1016/j.aim.2023.109247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Interpolating between the classical notions of intersection and polar centroid bodies, (real) L-p-intersection bodies, for -1 < p < 1, play an important role in the dual L-p-Brunn-Minkowski theory. Inspired by the recent construction of complex centroid bodies, a complex version of L-p-intersection bodies, with range extended to p >-2, is introduced, interpolating between complex intersection and polar complex centroid bodies. It is shown that the complex L-p-intersection body of an S-1-invariant convex body is pseudoconvex, if -2 < p <-1and convex, if p >=-1. Moreover, intersection inequalities of Busemann-Petty type in the sense of Adamczak-Paouris-Pivovarov-Simanjuntak are deduced. (c) 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Convexity of Lp-intersection bodies
    Berck, Gautier
    ADVANCES IN MATHEMATICS, 2009, 222 (03) : 920 - 936
  • [2] Quasi Lp-Intersection Bodies
    Wu Yang Yu
    Dong Hua Wu
    Gang Song Leng
    Acta Mathematica Sinica, English Series, 2007, 23 : 1937 - 1948
  • [3] Quasi Lp-Intersection Bodies
    Wu Yang YU Institute of Management Decision & Innovation
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (11) : 1937 - 1948
  • [4] Quasi Lp-Intersection bodies
    Wu Yang Yu
    Dong Hua Wu
    Gang Song Leng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (11) : 1937 - 1948
  • [5] GENERAL Lp-INTERSECTION BODIES
    Wang, Weidong
    Li, Yanan
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (04): : 1247 - 1259
  • [6] AFFINE ISOPERIMETRIC INEQUALITIES FOR Lp-INTERSECTION BODIES
    Lu Fenghong
    Mao Weihong
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (02) : 489 - 500
  • [7] Busemann–Petty Problems for General Lp-Intersection Bodies
    Wei Dong WANG
    Ya Nan LI
    Acta Mathematica Sinica,English Series, 2015, (05) : 777 - 786
  • [8] Busemann-Petty problems for general Lp-intersection bodies
    Wei Dong Wang
    Ya Nan Li
    Acta Mathematica Sinica, English Series, 2015, 31 : 777 - 786
  • [9] Lp-dual geominimal surface areas for the general Lp-intersection bodies
    Shen, Zhonghuan
    Li, Yanan
    Wang, Weidong
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 3519 - 3529
  • [10] Busemann-Petty Problems for General Lp-Intersection Bodies
    Wang, Wei Dong
    Li, Ya Nan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (05) : 777 - 786