Super-exponential growth and stochastic size dynamics in rod-like bacteria

被引:7
|
作者
Cylke, Arianna [1 ]
Banerjee, Shiladitya [1 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
CELL-SIZE; MASS;
D O I
10.1016/j.bpj.2023.02.015
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Proliferating bacterial cells exhibit stochastic growth and size dynamics, but the regulation of noise in bacterial growth and morphogenesis remains poorly understood. A quantitative understanding of morphogenetic noise control, and how it changes under different growth conditions, would provide better insights into cell-to-cell variability and intergenerational fluctuations in cell physiology. Using multigenerational growth and width data of single Escherichia coli and Caulobacter crescentus cells, we deduce the equations governing growth and size dynamics of rod-like bacterial cells. Interestingly, we find that both E. coli and C. crescentus cells deviate from exponential growth within the cell cycle. In particular, the exponential growth rate increases during the cell cycle irrespective of nutrient or temperature conditions. We propose a mechanistic model that explains the emergence of super-exponential growth from autocatalytic production of ribosomes coupled to the rate of cell elongation and surface area synthesis. Using this new model and statistical inference on large datasets, we construct the Langevin equations governing cell growth and size dynamics of E. coli cells in different nutrient conditions. The single-cell level model predicts how noise in intragenerational and intergenerational processes regulate variability in cell morphology and generation times, revealing quantitative strategies for cellular resource allocation and morphogenetic noise control in different growth
引用
收藏
页码:1254 / 1267
页数:14
相关论文
共 50 条
  • [1] A Stochastic Super-Exponential Growth Model for Population Dynamics
    Avila, P.
    Rekker, A.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2010, 1301 : 196 - 204
  • [2] Analysis of the Stochastic Super-Exponential Growth Model
    Avila, P.
    Rekker, A.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 3RD INTERNATIONAL CONFERENCE - AMITANS'11, 2011, 1404
  • [3] Groups with super-exponential subgroup growth
    Pyber, L
    Shalev, A
    COMBINATORICA, 1996, 16 (04) : 527 - 533
  • [4] Superdiffusions with super-exponential growth: Construction, mass and spread
    Chen, Zhen-Qing
    Englander, Janos
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 1809 - 1840
  • [5] Super-Exponential Growth in Models of a Binary String World
    Villani, Marco
    Serra, Roberto
    ENTROPY, 2023, 25 (01)
  • [6] Super-exponential growth expectations and the global financial crisis
    Leiss, Matthias
    Nax, Heinrich H.
    Sornette, Didier
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2015, 55 : 1 - 13
  • [7] Rod-like Bacteria and Recurrent Venous Thromboembolism
    Wang, Lemin
    Zhang, Xiaoyu
    Duan, Qianglin
    Lv, Wei
    Gong, Zhu
    Xie, Yuan
    Liang, Aibin
    Wang, Yenan
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2012, 186 (07) : 696 - 696
  • [8] Super-exponential growth of out-of-time-ordered correlators
    Zhao, Wen-Lei
    Hu, Yue
    Li, Zhi
    Wang, Qian
    PHYSICAL REVIEW B, 2021, 103 (18)
  • [9] Extension of localisation operators to ultradistributional symbols with super-exponential growth
    Pilipovic, Stevan
    Prangoski, Bojan
    Vuckovic, Dorde
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
  • [10] Extension of localisation operators to ultradistributional symbols with super-exponential growth
    Stevan Pilipović
    Bojan Prangoski
    Ɖorđe Vučković
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116