Miniaturization of Reference Electrodes for Solid-State Lithium-Ion Batteries

被引:11
|
作者
Hertle, Jonas [1 ,2 ]
Walther, Felix [1 ,2 ]
Mogwitz, Boris [1 ,2 ]
Schroeder, Steffen [1 ,2 ]
Wu, Xiaohan [3 ]
Richter, Felix H. [1 ,2 ]
Janek, Juergen [1 ,2 ]
机构
[1] Justus Liebig Univ Giessen, Inst Phys Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[2] Justus Liebig Univ Giessen, Ctr Mat Res ZfM, Heinrich Buff Ring 16, D-35392 Giessen, Germany
[3] BASF SE, D-67056 Ludwigshafen, Germany
关键词
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; PLACEMENT; CELLS;
D O I
10.1149/1945-7111/accb6f
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Enabling simple three-electrode (3E) setups for solid-state battery cells is important allowing investigation of individual electrodes to shed more light on interface charge transfer and reactions occurring in solid-state battery cells. Two different 3E setups are compared, and their practical value is evaluated. A miniaturized reference electrode (mu-RE) is developed from lithium-plated gold wires with a tungsten core providing a stable potential. Cells with Li6PS5Cl as solid electrolyte, Li1-xNi0.85Co0.10Mn0.05O2 (NCM851005) as cathode active material and Li4Ti5O12/Li7Ti5O12 (LTO) or In/InLi as anode are investigated. The reference electrode provides a stable potential of 0 V vs Li+/Li, hence allowing the precise measurement of single electrode potentials. The setup leaves the usual cell geometry essentially unchanged and causes only minor additional work during cell assembly, allowing widespread application. Evidence is provided that 3E setups are needed to evaluate the rate capability of active materials correctly and that two-electrode (2E) setups can massively underestimate the rate capability of electrodes. The impedance of full cells is systematically analyzed based on separate anode and cathode impedances.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Are solid-state batteries safer than lithium-ion batteries?
    Bates, Alex M.
    Preger, Yuliya
    Torres-Castro, Loraine
    Harrison, Katharine L.
    Harris, Stephen J.
    Hewson, John
    JOULE, 2022, 6 (04) : 742 - 755
  • [2] Solid-State Polymer Electrolytes for Lithium-Ion Batteries
    E. A. Karpushkin
    L. I. Lopatina
    O. A. Drozhzhin
    V. G. Sergeyev
    Moscow University Chemistry Bulletin, 2024, 79 (6) : 420 - 428
  • [3] Stress and Manufacturability in Solid-State Lithium-Ion Batteries
    Bin Mamtaz, Md Raziun
    Michaud, Xavier
    Jo, Hongseok
    Park, Simon S.
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2023, 10 (04) : 1093 - 1137
  • [4] Stress and Manufacturability in Solid-State Lithium-Ion Batteries
    Md Raziun Bin Mamtaz
    Xavier Michaud
    Hongseok Jo
    Simon S. Park
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2023, 10 : 1093 - 1137
  • [5] Digital Printing of Solid-State Lithium-Ion Batteries
    Deiner, L. Jay
    Gomes Bezerra, Carlos Andre
    Howell, Thomas G.
    Powell, Amber S.
    ADVANCED ENGINEERING MATERIALS, 2019, 21 (11)
  • [6] SOLID-STATE ELECTRODES FOR LITHIUM BATTERIES
    MURPHY, DW
    AMERICAN CERAMIC SOCIETY BULLETIN, 1980, 59 (08): : 837 - 837
  • [7] Reliable reference electrodes for lithium-ion batteries
    La Mantia, F.
    Wessells, C. D.
    Deshazer, H. D.
    Cui, Yi
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 31 : 141 - 144
  • [8] Review on composite solid electrolytes for solid-state lithium-ion batteries
    Zhang, Z.
    Wang, X.
    Li, X.
    Zhao, J.
    Liu, G.
    Yu, W.
    Dong, X.
    Wang, J.
    MATERIALS TODAY SUSTAINABILITY, 2023, 21
  • [9] Perspective Recycling for All Solid-State Lithium-Ion Batteries
    Azhari, Luqman
    Bong, Sungyool
    Ma, Xiaotu
    Wang, Yan
    MATTER, 2020, 3 (06) : 1845 - 1861
  • [10] Solid-State Thermal Management for Lithium-Ion EV Batteries
    Alaoui, Chakib
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2013, 62 (01) : 98 - 107