Transcriptome Analysis Reveals Differentially Expressed Genes Involved in Cadmium and Arsenic Accumulation in Tea Plant (Camellia sinensis)

被引:4
|
作者
Liu, Shiqi [1 ]
Peng, Xuqian [1 ]
Wang, Xiaojing [1 ]
Zhuang, Weibing [2 ]
机构
[1] Guizhou Univ, Coll Tea Sci, Guiyang 550025, Peoples R China
[2] Jiangsu Prov & Chinese Acad Sci, Inst Bot, Jiangsu Key Lab Res & Utilizat Plant Resources, Nanjing Bot Garden Mem Sun Yat Sen, Nanjing 210014, Peoples R China
来源
PLANTS-BASEL | 2023年 / 12卷 / 05期
关键词
transcriptome; Cd and As; tea plants; RNA-sequencing; WGCNA; TOLERANCE; TOXICITY; CD; OVEREXPRESSION; TRANSLOCATION; RESPONSES; BARLEY; MYB5;
D O I
10.3390/plants12051182
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Tea (Camellia sinensis) is the second most consumed drink in the world. Rapid industrialization has caused various impacts on nature and increased pollution by heavy metals. However, the molecular mechanisms of cadmium (Cd) and arsenic (As) tolerance and accumulation in tea plants are poorly understood. The present study focused on the effects of heavy metals Cd and As on tea plants. Transcriptomic regulation of tea roots after Cd and As exposure was analyzed to explore the candidate genes involved in Cd and As tolerance and accumulation. In total, 2087, 1029, 1707, and 366 differentially expressed genes (DEGs) were obtained in Cd1 (with Cd treatment for 10 days) vs. CK (without Cd treatment), Cd2 (with Cd treatment for 15 days) vs. CK, As1 (with As treatment for 10 days) vs. CK (without Cd treatment), and As2 (with As treatment for 15 days) vs. CK, respectively. Analysis of DEGs showed that a total of 45 DEGs with the same expression patterns were identified in four pairwise comparison groups. One ERF transcription factor (CSS0000647) and six structural genes (CSS0033791, CSS0050491, CSS0001107, CSS0019367, CSS0006162, and CSS0035212) were only increased at 15 d of Cd and As treatments. Using weighted gene co-expression network analysis (WGCNA) revealed that the transcription factor (CSS0000647) was positively correlated with five structural genes (CSS0001107, CSS0019367, CSS0006162, CSS0033791, and CSS0035212). Moreover, one gene (CSS0004428) was significantly upregulated in both Cd and As treatments, suggesting that these genes might play important roles in enhancing the tolerance to Cd and As stresses. These results provide candidate genes to enhance multi-metal tolerance through the genetic engineering technology.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis)
    Cao, Dan
    Liu, Yanli
    Ma, Linlong
    Jin, Xiaofang
    Guo, Guiyi
    Tan, Rongrong
    Liu, Zheng
    Zheng, Lin
    Ye, Fei
    Liu, Wei
    [J]. PLOS ONE, 2018, 13 (06):
  • [2] Transcriptome Analysis Reveals Differentially Expressed Genes Involved in Aluminum, Copper and Cadmium Accumulation in Tea 'Qianmei 419' and 'Qianfu 4'
    Yao, Xinzhuan
    Chen, Hufang
    Zhang, Baohui
    Lu, Litang
    [J]. PLANTS-BASEL, 2023, 12 (13):
  • [3] Comparative transcriptome analysis reveals key pathways and genes involved in trichome development in tea plant (Camellia sinensis)
    Chen, Lan
    Tian, Na
    Hu, Mengqing
    Sandhu, Devinder
    Jin, Qifang
    Gu, Meiyi
    Zhang, Xiangqin
    Peng, Ying
    Zhang, Jiali
    Chen, Zhenyan
    Liu, Guizhi
    Huang, Mengdi
    Huang, Jianan
    Liu, Zhonghua
    Liu, Shuoqian
    [J]. FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [4] Metabolome and Transcriptome Analysis Reveals Putative Genes Involved in Anthocyanin Accumulation and Coloration in White and Pink Tea (Camellia sinensis) Flower
    Zhou, Caibi
    Mei, Xin
    Rothenberg, Dylan O'Neill
    Yang, Zaibo
    Zhang, Wenting
    Wan, Shihua
    Yang, Haijun
    Zhang, Lingyun
    [J]. MOLECULES, 2020, 25 (01):
  • [5] Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze)
    Jayaswall, Kuldip
    Mahajan, Pallavi
    Singh, Gagandeep
    Parmar, Rajni
    Seth, Romit
    Raina, Aparnashree
    Swarnkar, Mohit Kumar
    Singh, Anil Kumar
    Shankar, Ravi
    Sharma, Ram Kumar
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [6] Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze)
    Kuldip Jayaswall
    Pallavi Mahajan
    Gagandeep Singh
    Rajni Parmar
    Romit Seth
    Aparnashree Raina
    Mohit Kumar Swarnkar
    Anil Kumar Singh
    Ravi Shankar
    Ram Kumar Sharma
    [J]. Scientific Reports, 6
  • [7] Comparative transcriptomic analysis of the tea plant (Camellia sinensis) reveals key genes involved in pistil deletion
    Liu, Yufei
    Pang, Dandan
    Tian, Yiping
    Li, Youyong
    Jiang, Huibing
    Sun, Yunnan
    Xia, Lifei
    Chen, Linbo
    [J]. HEREDITAS, 2020, 157 (01)
  • [8] Comparative transcriptomic analysis of the tea plant (Camellia sinensis) reveals key genes involved in pistil deletion
    Yufei Liu
    Dandan Pang
    Yiping Tian
    Youyong Li
    Huibing Jiang
    Yunnan Sun
    Lifei Xia
    Linbo Chen
    [J]. Hereditas, 157
  • [9] Transcriptome and metabolite analysis identifies nitrogen utilization genes in tea plant (Camellia sinensis)
    Wei Li
    Fen Xiang
    Micai Zhong
    Lingyun Zhou
    Hongyan Liu
    Saijun Li
    Xuewen Wang
    [J]. Scientific Reports, 7
  • [10] Transcriptome and metabolite analysis identifies nitrogen utilization genes in tea plant (Camellia sinensis)
    Li, Wei
    Xiang, Fen
    Zhong, Micai
    Zhou, Lingyun
    Liu, Hongyan
    Li, Saijun
    Wang, Xuewen
    [J]. SCIENTIFIC REPORTS, 2017, 7