Comparing Data Representation Techniques for Tactile Sensing in Classification Tasks

被引:0
|
作者
Danyamraju, V. Naga Sai Siddhartha [1 ]
Prottoy, Tahsin Ahmed [1 ]
Jobayer, S. M. Shahriar [1 ]
da Fonseca, Vinicius Prado [1 ]
机构
[1] Mem Univ Newfoundland, Dept Comp Sci, St John, NF, Canada
来源
关键词
Tactile sensing; Machine learning; Feature engineering; Robotics;
D O I
10.1109/SENSORS56945.2023.10325260
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The present paper explores the importance of utilizing statistical and frequency-based data pre-processing techniques in tactile sensing for robotic applications. The study compares the performance of raw data-based classification with these techniques and highlights the limitations of previous studies that overlook their benefits. The paper also discusses multimodal tactile sensing and relevant literature on statistical and frequency-based data preprocessing techniques applied to time series data from sensors. The aim is to enhance tactile sensing systems' classification accuracy and robustness for more efficient and effective robotic applications.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Improved Behavioral Box and Sensing Techniques for Analysis of Tactile Discrimination Tasks in Rodents
    Oliveira Silva, Jose Wanderson
    Lima, Renan Araujo
    Morya, Edgard
    Brasil, Fabricio Lima
    Garcia Goncalves, Luiz Marcos
    [J]. SENSORS, 2023, 23 (01)
  • [2] Graphical representation of tactile sensing data in Minimally Invasive Surgery
    Ramezanifard, Mohammadreza
    Dargahi, Javad
    Xie, Wen-Fang
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 1222 - 1227
  • [3] Classification of Motor Tasks from EEG Signals Comparing Preprocessing Techniques
    Kauati-Saito, Eric
    da Silveira, Gustavo F. M.
    Da-Silva, Paulo J. G.
    Miranda de Sa, Antonio Mauricio F. L.
    Tierra-Criollo, Carlos Julio
    [J]. XXVI BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2018, VOL. 2, 2019, 70 (02): : 109 - 113
  • [4] Vision and tactile sensing for real world tasks
    Kragic, D
    Crinier, S
    Brunn, D
    Christensen, HI
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2003, : 1545 - 1550
  • [5] COMPARING CLASSIFICATION TECHNIQUES
    KENNEDY, P
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 1991, 7 (03) : 403 - 406
  • [6] Simulation of Tactile Sensing Arrays for Physical Interaction Tasks
    Kappassov, Zhanat
    Corrales-Ramon, Juan-Antonio
    Perdereau, Veronique
    [J]. 2020 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2020, : 196 - 201
  • [7] New classification techniques for analysis of remote sensing integrated data
    Console, E
    Mouchot, MC
    [J]. IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 646 - 648
  • [8] Computational Intelligence Techniques for Tactile Sensing Systems
    Gastaldo, Paolo
    Pinna, Luigi
    Seminara, Lucia
    Valle, Maurizio
    Zunino, Rodolfo
    [J]. SENSORS, 2014, 14 (06) : 10952 - 10976
  • [9] A Triangle Histogram for Object Classification by Tactile Sensing
    Zhang, Mabel M.
    Kennedy, Monroe D., III
    Hsieh, M. Ani
    Daniilidis, Kostas
    [J]. 2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 4931 - 4938
  • [10] Classification of application reviews into software maintenance tasks using data mining techniques
    Al-Hawari, Assem
    Najadat, Hassan
    Shatnawi, Raed
    [J]. SOFTWARE QUALITY JOURNAL, 2021, 29 (03) : 667 - 703