Spatiotemporal regulation of GIPR signaling impacts glucose homeostasis as revealed in studies of a common GIPR variant

被引:3
|
作者
Yammine, Lucie [1 ]
Picatoste, Belen [1 ]
Abdullah, Nazish [1 ]
Leahey, Rosemary A. [1 ]
Johnson, Emma F. [1 ]
Gomez-Banoy, Nicolas [2 ,3 ]
Rosselot, Carolina [4 ]
Wen, Jennifer [1 ]
Hossain, Tahmina [1 ]
Goncalves, Marcus D. [6 ]
Lo, James C. [2 ,3 ]
Garcia-Ocana, Adolfo [5 ]
McGraw, Timothy E. [1 ,2 ,3 ,7 ]
机构
[1] Weill Cornell Med Coll, Dept Biochem, New York, NY 10065 USA
[2] Weill Cornell Med, Weill Ctr Metab Hlth, New York, NY 10021 USA
[3] Weill Cornell Med, Dept Med, Div Cardiol, New York, NY 10021 USA
[4] Icahn Sch Med Mt Sinai, Diabet Obes & Metab Inst, New York, NY 10029 USA
[5] City Hope Natl Med Ctr, Arthur Riggs Diabet & Metab Res Inst, Dept Mol & Cellular Endocrinol, Duarte, CA 91010 USA
[6] Weill Cornell Med, Dept Med, New York, NY 10065 USA
[7] Weill Cornell Med Coll, Dept Cardiothorac Surg, New York, NY 10065 USA
来源
MOLECULAR METABOLISM | 2023年 / 78卷
关键词
GIPR; Incretin; Glucose metabolism; Diabetes; Receptor trafficking; Pancreatic islets; Obesity; GASTRIC-INHIBITORY POLYPEPTIDE; PEPTIDE-1 RECEPTOR AGONISTS; ELEMENT-BINDING PROTEIN; BODY-MASS INDEX; INSULIN-SECRETION; INCRETIN HORMONES; TRANS-GOLGI; CAMP; DESENSITIZATION; ASSOCIATION;
D O I
10.1016/j.molmet.2023.101831
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Glucose-dependent insulinotropic polypeptide (GIP) has a role in controlling postprandial metabolic tone. In humans, a GIP receptor (GIPR) variant (Q354, rs1800437) is associated with a lower body mass index (BMI) and increased risk for Type 2 Diabetes. To better understand the impacts of GIPR-Q354 on metabolism, it is necessary to study it in an isogeneic background to the predominant GIPR isoform, E354. To accomplish this objective, we used CRISPR-CAS9 editing to generate mouse models of GIPR-Q354 and GIPR-E354. Here we characterize the metabolic effects of GIPR-Q354 variant in a mouse model (GIPR-Q350). Metkods: We generated the GIPR-Q350 mice for in vivo studies of metabolic impact of the variant. We isolated pancreatic islets from GIPR-Q350 mice to study insulin secretion ex vivo. We used a (3 -cell cell line to understand the impact of the GIPR-Q354 variant on the receptor traffic. Results: We found that female GIPR-Q350 mice are leaner than littermate controls, and male GIPR-Q350 mice are resistant to diet-induced obesity, in line with the association of the variant with reduced BMI in humans. GIPR-Q350 mice of both sexes are more glucose tolerant and exhibit an increased sensitivity to GIP. Postprandial GIP levels are reduced in GIPR-Q350 mice, revealing feedback regulation that balances the increased sensitivity of GIP target tissues to secretion of GIP from intestinal endocrine cells. The increased GIP sensitivity is recapitulated ex vivo during glucose stimulated insulin secretion assays in islets. Generation of cAMP in islets downstream of GIPR activation is not affected by the Q354 substitution. However, post-activation traffic of GIPR-Q354 variant in (3-cells is altered, characterized by enhanced intracellular dwell time and increased localization to the Trans-Golgi Network (TGN). Conclusions: Our data link altered intracellular traffic of the GIPR-Q354 variant with GIP control of metabolism. We propose that this change in spatiotemporal signaling underlies the physiologic effects of GIPR-Q350/4 and GIPR-E350/4 in mice and humans. These findings contribute to a more complete understanding of the impact of GIPR-Q354 variant on glucose homeostasis that could perhaps be leveraged to enhance phar-macologic targeting of GIPR for the treatment of metabolic disease. o 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:16
相关论文
共 35 条
  • [1] The other side of the incretin story: GIPR signaling in energy homeostasis
    Nakandakari, Susana C. B. R.
    Fosam, Andin E.
    Perry, Rachel J.
    CELL METABOLISM, 2025, 37 (01) : 1 - 3
  • [2] Regulation of energy metabolism through central GIPR signaling
    Liskiewicz, Arkadiusz
    Mueller, Timo D.
    PEPTIDES, 2024, 176
  • [3] Combined genetic disruption of incretin signaling produces abnormalities in glucose Homeostasis and body weight in GLP-1R-/-:GIPR-/- double mutant mice
    Hansotia, T
    Baggio, LL
    Tsukiyama, K
    Miyawaki, K
    Yamada, Y
    Thorens, B
    Seino, Y
    Drucker, DJ
    DIABETES, 2002, 51 : A66 - A66
  • [4] Common Variant Near GIPR Gene Modifies Fasting Glucose and Related Traits Response to Weight-Loss Diets in a Two-Year Randomized Trial
    Qi, Qibin
    Hu, Frank B.
    Sacks, Frank M.
    Qi, Lu
    DIABETES, 2011, 60 : A32 - A32
  • [5] Adipocyte Expression of the Glucose-Dependent Insulinotropic Polypeptide Receptor (GIPR) Involves Gene Regulation by PPARγ and Histone Acetylation
    Kim, Su-Jin
    Nian, Cuilan
    McIntosh, Christopher H. S.
    DIABETES, 2011, 60 : A480 - A480
  • [6] The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling
    Zhang, Qian
    Delessa, Challa Tenagne
    Augustin, Robert
    Bakhti, Mostafa
    Collden, Gustav
    Drucker, Daniel J.
    Feuchtinger, Annette
    Caceres, Cristina Garcia
    Grandl, Gerald
    Harger, Alexandra
    Herzig, Stephan
    Hofmann, Susanna
    Holleman, Cassie Lynn
    Jastroch, Martin
    Keipert, Susanne
    Kleinert, Maximilian
    Knerr, Patrick J.
    Kulaj, Konxhe
    Legutko, Beata
    Lickert, Heiko
    Liu, Xue
    Luippold, Gerd
    Lutter, Dominik
    Malogajski, Emilija
    Medina, Marta Tarquis
    Mowery, Stephanie A.
    Blutke, Andreas
    Perez-Tilve, Diego
    Salinno, Ciro
    Sehrer, Laura
    DiMarchi, Richard D.
    Tschoep, Matthias H.
    Stemmer, Kerstin
    Finan, Brian
    Wolfrum, Christian
    Mueller, Timo D.
    CELL METABOLISM, 2021, 33 (04) : 833 - +
  • [7] Regulation of hepatic insulin signaling and glucose homeostasis by sphingosine kinase 2
    Aji, Gulibositan
    Huang, Yu
    Li Ng, Mei
    Wang, Wei
    Lan, Tian
    Li, Min
    Li, Yufei
    Chen, Qi
    Li, Rui
    Yan, Sishan
    Tran, Collin
    Burchfield, James G.
    Couttas, Timothy A.
    Chen, Jinbiao
    Chung, Long Hoa
    Liu, Da
    Wadham, Carol
    Hogg, Philip J.
    Gao, Xin
    Vadas, Mathew A.
    Gamble, Jennifer R.
    Don, Anthony S.
    Xia, Pu
    Qi, Yanfei
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (39) : 24434 - 24442
  • [8] A meta-analysis of GWA blood glucose after 2 h of OGTT revealed that GIPR is associated with the secretion of insulin based on glucose and ADCY5 is a new susceptibility gene for type 2 diabetes.
    Bouatia-Naji, N.
    Saxena, R.
    Hivert, M. F.
    Langenberg, C.
    Tanaka, T.
    Pankow, J.
    Vollenweider, P.
    Lyssenko, V.
    Levy-Marchal, C.
    Sladek, R.
    Pattou, F.
    Watanabe, R.
    Froguel, P.
    DIABETES & METABOLISM, 2010, 36 : A3 - A3
  • [9] The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling
    Wang, Juan
    Cui, Baiping
    Chen, Zhongjian
    Ding, Xiaolei
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
  • [10] New Insight into the Vagus Nerve Regulation of Glucose Homeostasis: A Role for Afferent Signaling and Skeletal Muscle Glucose Uptake
    Gabalski, Arielle
    Masi, Emily
    Newman, Justin
    Addorisio, Meghan
    Silverman, Harold
    Tsaava, Tea
    Chavan, Sangeeta
    Tracey, Kevin
    FASEB JOURNAL, 2021, 35