Using the (Iterative) Ensemble Kalman Smoother to Estimate the Time Correlation in Model Error

被引:1
|
作者
Amezcua, Javier [1 ,2 ,3 ]
Ren, Haonan [1 ]
Van Leeuwen, Peter Jan [1 ]
机构
[1] Univ Reading, Dept Meteorol, Reading RG6, England
[2] Tecnol Monterrey Campus Ciudad Mexico, Dept Sci & Engn, Mexico City, Mexico
[3] Natl Ctr Earth Observat, Leicester, England
基金
欧洲研究理事会;
关键词
data assimilation; model error; autocorrelation; parameter estimation; DATA ASSIMILATION; COVARIANCES; INVERSE; FILTER;
D O I
10.16993/tellusa.55
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Numerical weather prediction systems contain model errors related to missing and simplified physical processes, and limited model resolution. While it has been widely recognized that these model errors need to be included in the data assimilation formulation, providing prior estimates of their spatio-temporal characteristics is a hard problem. We follow a systematic path to estimate parameters in the model error formulation, specifically related to time-correlated model errors. This problem is more difficult than the standard parameter estimation problem because the model error parameters are only visible through the random model error realisations. By concentrating on linear and nonlinear low-dimensional systems, we are able to highlight the many aspects of this problem, using state augmentation in an ensemble Kalman smoother (EnKS) and its iterative variant (IEnKS). It is not possible to estimate the model error parameters in one assimilation window because enough information has to be gathered to see the parameters through the random errors, even when every time step is observed. If only one parameter is estimated in a linear one-dimensional system the EnKS works well, but when we try to estimate two parameters the method fails. An IEnKS is able to find the correct parameter values for the linear system. For the highly nonlinear logistic map the IEnKS can get stuck in local minima, but with careful tuning of the step length in the iterations and careful transformation of the solution space the correct parameter values can be found. The main conclusion is that estimating model error parameters -even in low-dimensional systems- is a difficult problem, but via careful reformulation of the problem practical solutions can be found.
引用
收藏
页码:108 / 128
页数:21
相关论文
共 50 条
  • [1] An Iterative Ensemble Kalman Smoother in Presence of Additive Model Error
    Fillion, Anthony
    Bocquet, Marc
    Gratton, Serge
    Gurol, Selime
    Sakov, Pavel
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 198 - 228
  • [2] Time-correlated model error in the (ensemble) Kalman smoother
    Amezcua, Javier
    van Leeuwen, Peter Jan
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (717) : 2650 - 2665
  • [3] An iterative ensemble Kalman smoother
    Bocquet, M.
    Sakov, P.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2014, 140 (682) : 1521 - 1535
  • [4] Localization and the iterative ensemble Kalman smoother
    Bocquet, M.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2016, 142 (695) : 1075 - 1089
  • [5] Batch seismic inversion using the iterative ensemble Kalman smoother
    Gineste, Michael
    Eidsvik, Jo
    COMPUTATIONAL GEOSCIENCES, 2021, 25 (03) : 1105 - 1121
  • [6] Batch seismic inversion using the iterative ensemble Kalman smoother
    Michael Gineste
    Jo Eidsvik
    Computational Geosciences, 2021, 25 : 1105 - 1121
  • [7] Effects of mis-specified time-correlated model error in the (ensemble) Kalman Smoother
    Ren, Haonan
    Amezcua, Javier
    van Leeuwen, Peter Jan
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (734) : 573 - 588
  • [8] Joint state and parameter estimation with an iterative ensemble Kalman smoother
    Bocquet, M.
    Sakov, P.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2013, 20 (05) : 803 - 818
  • [9] An iterative ensemble Kalman filter in the presence of additive model error
    Sakov, Pavel
    Haussaire, Jean-Matthieu
    Bocquet, Marc
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (713) : 1297 - 1309
  • [10] ERROR ESTIMATE FOR THE ENSEMBLE KALMAN FILTER ANALYSIS STEP
    Kovalenko, Andrey
    Mannseth, Trond
    Naevdal, Geir
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (04) : 1275 - 1287