Distributed Stochastic Proximal Algorithm With Random Reshuffling for Nonsmooth Finite-Sum Optimization

被引:1
|
作者
Jiang, Xia [1 ,2 ]
Zeng, Xianlin [1 ,2 ]
Sun, Jian [1 ,2 ]
Chen, Jie [3 ,4 ,5 ]
Xie, Lihua [6 ]
机构
[1] Beijing Inst Technol, Sch Automat, Key Lab Intelligent Control & Decis Complex Syst, Beijing, Peoples R China
[2] Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401120, Peoples R China
[3] Tongji Univ, Sch Elect & Informat Engn, Shanghai 200082, Peoples R China
[4] Beijing Inst Technol, Beijing Adv Innovat Ctr Intelligent Robots & Syst, Beijing 100081, Peoples R China
[5] Beijing Inst Technol, Key Lab Biomimet Robots & Syst, Minist Educ, Beijing 100081, Peoples R China
[6] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Distributed optimization; proximal operator; random reshuffling (RR); stochastic algorithm; time-varying graphs; GRADIENT ALGORITHMS; SUBGRADIENT METHODS;
D O I
10.1109/TNNLS.2022.3201711
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimization over time-varying multiagent networks. The objective function is a sum of differentiable convex functions and nonsmooth regularization. Each agent in the network updates local variables by local information exchange and cooperates to seek an optimal solution. We prove that local variable estimates generated by the proposed algorithm achieve consensus and are attracted to a neighborhood of the optimal solution with an O((1/T)+(1/root T)) convergence rate, where T is the total number of iterations. Finally, some comparative simulations are provided to verify the convergence performance of the proposed algorithm.
引用
收藏
页码:4082 / 4096
页数:15
相关论文
共 50 条
  • [1] A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum Optimization
    Qiu, Junwen
    Li, Xiao
    Milzarek, Andre
    [J]. arXiv, 2023,
  • [2] Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization
    Reddi, Sashank J.
    Sra, Suvrit
    Poczos, Barnabas
    Smola, Alexander J.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [3] An accelerated stochastic ADMM for nonconvex and nonsmooth finite-sum optimization
    Zeng, Yuxuan
    Wang, Zhiguo
    Bai, Jianchao
    Shen, Xiaojing
    [J]. AUTOMATICA, 2024, 163
  • [4] Inexact proximal gradient algorithm with random reshuffling for nonsmooth optimization
    Xia JIANG
    Yanyan FANG
    Xianlin ZENG
    Jian SUN
    Jie CHEN
    [J]. Science China(Information Sciences)., 2025, 68 (01) - 237
  • [5] AN OPTIMAL ALGORITHM FOR DECENTRALIZED FINITE-SUM OPTIMIZATION
    Hendrikx, Hadrien
    Bach, Francis
    Massoulie, Laurent
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (04) : 2753 - 2783
  • [6] ACCELERATED STOCHASTIC ALGORITHMS FOR NONCONVEX FINITE-SUM AND MULTIBLOCK OPTIMIZATION
    Lan, Guanghui
    Yang, Yu
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2753 - 2784
  • [7] Finite-Sum Coupled Compositional Stochastic Optimization: Theory and Applications
    Wang, Bokun
    Yang, Tianbao
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [8] Finite-sum smooth optimization with SARAH
    Lam M. Nguyen
    Marten van Dijk
    Dzung T. Phan
    Phuong Ha Nguyen
    Tsui-Wei Weng
    Jayant R. Kalagnanam
    [J]. Computational Optimization and Applications, 2022, 82 : 561 - 593
  • [9] Distributed Finite-Sum Constrained Optimization subject to Nonlinearity on the Node Dynamics
    Doostmohammadian, Mohammadreza
    Vrakopoulou, Maria
    Aghasi, Alireza
    Charalambous, Themistoklis
    [J]. 2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [10] Finite-sum smooth optimization with SARAH
    Nguyen, Lam M.
    van Dijk, Marten
    Phan, Dzung T.
    Nguyen, Phuong Ha
    Weng, Tsui-Wei
    Kalagnanam, Jayant R.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 82 (03) : 561 - 593