Bayesian model selection;
boreal forest;
global change;
log score;
model transferability;
multinomial likelihood;
probabilistic prediction;
species dependence;
BIODIVERSITY;
MULTIVARIATE;
D O I:
10.1111/geb.13827
中图分类号:
Q14 [生态学(生物生态学)];
学科分类号:
071012 ;
0713 ;
摘要:
AimJoint species distribution models (JSDMs) are an important tool for predicting ecosystem diversity and function under global change. The growing complexity of modern JSDMs necessitates careful model selection tailored to the challenges of community prediction under novel conditions (i.e., transferable models). Common approaches to evaluate the performance of JSDMs for community-level prediction are based on individual species predictions that do not account for the species correlation structures inherent in JSDMs. Here, we formalize a Bayesian model selection approach that accounts for species correlation structures and apply it to compare the community-level predictive performance of alternative JSDMs across broad environmental gradients emulating transferable applications.InnovationWe connect the evaluation of JSDM predictions to Bayesian model selection theory under which the log score is the preferred performance measure for probabilistic prediction. We define the joint log score for community-level prediction and distinguish it from more commonly applied JSDM evaluation metrics. We then apply the joint community log score to evaluate predictions of 1918 out-of-sample boreal forest understory communities spanning 39 species generated using a novel multinomial JSDM framework that supports alternative species correlation structures: independent, compositional dependence and residual dependence.Main conclusionsThe best performing JSDM included all observed environmental variables and compositional dependence modelled using a multinomial likelihood. The addition of flexible residual species correlations improved model predictions only within JSDMs applying a reduced set of environmental variables highlighting potential confounding between unobserved environmental conditions and residual species dependence. The best performing JSDM was consistent across successional and bioclimatic gradients regardless of whether interest was in species- or community-level prediction. Our study demonstrates the utility of the joint community log score to compare the predictive performance of JSDMs and highlights the importance of accounting for species dependence when interest is in community composition under novel conditions.
机构:
Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
Univ New S Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, AustraliaUniv New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
Madon, Benedicte
Warton, David I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
Univ New S Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, AustraliaUniv New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
Warton, David I.
Araujo, Miguel B.
论文数: 0引用数: 0
h-index: 0
机构:
CSIC, Natl Museum Nat Sci, Dept Biodivers & Evolutionary Biol, ES-28006 Madrid, Spain
Univ Evora, CIBIO, Rui Nabeiro Biodivers Chair, PL-7000 Evora, Portugal
Univ Copenhagen, Dept Biol, Ctr Macroecol Evolut & Climate, DK-2100 Copenhagen, DenmarkUniv New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
机构:
Univ Massachusetts Dartmouth, Dept Biol, N Dartmouth, MA 02747 USAUniv Massachusetts Dartmouth, Dept Biol, N Dartmouth, MA 02747 USA
Rajaniemi, Tara K.
Turkington, Roy
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada
Univ British Columbia, Biodivers Res Ctr, Vancouver, BC V6T 1Z4, CanadaUniv Massachusetts Dartmouth, Dept Biol, N Dartmouth, MA 02747 USA
Turkington, Roy
Goldberg, Deborah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USAUniv Massachusetts Dartmouth, Dept Biol, N Dartmouth, MA 02747 USA
机构:
SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USASUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA
Supp, Sarah R.
Ernest, S. K. Morgan
论文数: 0引用数: 0
h-index: 0
机构:
Utah State Univ, Dept Biol, Logan, UT 84322 USA
Utah State Univ, Ctr Ecol, Logan, UT 84322 USASUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA
机构:
Chinese Acad Sci, Chengdu Inst Biol, CAS Key Lab Mt Ecol Restorat & Bioresource Utiliz, Chengdu 610041, Peoples R China
Chinese Acad Sci, Chengdu Inst Biol, Ecol Restorat & Biodivers Conservat Key Lab Sichu, Chengdu 610041, Peoples R ChinaChinese Acad Sci, Chengdu Inst Biol, CAS Key Lab Mt Ecol Restorat & Bioresource Utiliz, Chengdu 610041, Peoples R China
Chen, Youhua
Shen, Tsung-Jen
论文数: 0引用数: 0
h-index: 0
机构:
Natl Chung Hsing Univ, Inst Stat, 250 Kuo Kuang Rd, Taichung 40227, Taiwan
Natl Chung Hsing Univ, Dept Appl Math, 250 Kuo Kuang Rd, Taichung 40227, TaiwanChinese Acad Sci, Chengdu Inst Biol, CAS Key Lab Mt Ecol Restorat & Bioresource Utiliz, Chengdu 610041, Peoples R China
Shen, Tsung-Jen
Condit, Richard
论文数: 0引用数: 0
h-index: 0
机构:
Field Museum Nat Hist, 1400 S Lake Shore Dr, Chicago, IL 60605 USA
Morton Arboretum, 4100 Illinois Rte 53, Lisle, IL 60532 USAChinese Acad Sci, Chengdu Inst Biol, CAS Key Lab Mt Ecol Restorat & Bioresource Utiliz, Chengdu 610041, Peoples R China
Condit, Richard
Hubbell, Stephen P.
论文数: 0引用数: 0
h-index: 0
机构:
Smithsonian Trop Res Inst, Apartado 0843-03092, Balboa, Panama
Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USAChinese Acad Sci, Chengdu Inst Biol, CAS Key Lab Mt Ecol Restorat & Bioresource Utiliz, Chengdu 610041, Peoples R China