Water as a Sustainable Leaching Agent for the Selective Leaching of Lithium from Spent Lithium-Ion Batteries

被引:2
|
作者
Greil, Rafaela [1 ]
Chai, Joevy [1 ,2 ]
Rudelstorfer, Georg [1 ]
Mitsche, Stefan [3 ,4 ]
Lux, Susanne [1 ]
机构
[1] Graz Univ Technol, Inst Chem Engn & Environm Technol, A-8010 Graz, Austria
[2] Univ Teknol PETRONAS, Chem Engn Dept, Seri Iskanda 32610, Malaysia
[3] Graz Univ Technol, Inst Electron Microscopy & Nanoanal, A-8010 Graz, Austria
[4] Graz Univ Technol, Ctr Electron Microscopy, A-8010 Graz, Austria
来源
ACS OMEGA | 2024年 / 9卷 / 07期
关键词
RECOVERY; LI;
D O I
10.1021/acsomega.3c07405
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of a sustainable recycling process for lithium from spent lithium-ion batteries is an essential step to reduce the environmental impact of batteries. So far, the industrial implementation of a recycling process for lithium has been hindered by low recycling efficiencies and impurities in the recycled material. The aim of this study is thus to develop an easy-to-implement recycling concept for the selective leaching of lithium from spent lithium-ion batteries with water as a sustainable leaching reagent. With this highly selective process, the quantity of chemicals used can be substantially decreased. The influence of the leaching temperature, the solid/liquid-ratio, the mixing rate, and the number of stages in multistage operation were investigated utilizing NCM-material. High leaching efficiencies and a high selectivity were achieved at moderate temperatures of 40 C-degrees and a solid/liquid-ratio of 100 g L-1. In multistage operation, a selectivity for lithium higher than 98% was achieved with 57% leaching performance of lithium. XRD-measurements showed that lithium carbonate was quantitatively leached, while lithium metal oxides remained in the black mass. Finally, the leaching kinetics were determined, proving that the first leaching period is diffusion controlled and, in the second period, the leaching rate is rate controlling. This work confirms the concept of a green leaching process by which lithium can be recycled with a high degree of purity.
引用
收藏
页码:7806 / 7816
页数:11
相关论文
共 50 条
  • [1] Leaching of lithium and cobalt from spent lithium-ion batteries using subcritical water
    Liu, Jhy-Chern
    Lie, Jenni
    Tanda, Stefani
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [2] Selective recycling of lithium from spent lithium-ion batteries by carbothermal reduction combined with multistage leaching
    Zhang, Guangwen
    Yuan, Xue
    Tay, Chor Yong
    He, Yaqun
    Wang, Haifeng
    Duan, Chenlong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 314
  • [3] Study on Roasting for Selective Lithium Leaching of Cathode Active Materials from Spent Lithium-Ion Batteries
    Jung, Yeonjae
    Yoo, Bongyoung
    Park, Sungcheol
    Kim, Yonghwan
    Son, Seongho
    METALS, 2021, 11 (09)
  • [4] Selective leaching of lithium from spent lithium-ion batteries using sulfuric acid and oxalic acid
    Haijun Yu
    Dongxing Wang
    Shuai Rao
    Lijuan Duan
    Cairu Shao
    Xiaohui Tu
    Zhiyuan Ma
    Hongyang Cao
    Zhiqiang Liu
    International Journal of Minerals,Metallurgy and Materials, 2024, (04) : 688 - 696
  • [5] Selective leaching of lithium from spent lithium-ion batteries using sulfuric acid and oxalic acid
    Yu, Haijun
    Wang, Dongxing
    Rao, Shuai
    Duan, Lijuan
    Shao, Cairu
    Tu, Xiaohui
    Ma, Zhiyuan
    Cao, Hongyang
    Liu, Zhiqiang
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (04) : 688 - 696
  • [6] Ultrasound-assisted leaching of cobalt and lithium from spent lithium-ion batteries
    Jiang, Feng
    Chen, Yuqian
    Ju, Shaohua
    Zhu, Qinyu
    Zhang, Libo
    Peng, Jinhui
    Wang, Xuming
    Miller, Jan D.
    ULTRASONICS SONOCHEMISTRY, 2018, 48 : 88 - 95
  • [7] Enhancement of leaching of cobalt and lithium from spent lithium-ion batteries by mechanochemical process
    Qu, Li-li
    He, Ya-qun
    Fu, Yuan-peng
    Xie, Wei-ning
    Ye, Cui-ling
    Lu, Qi-chang
    Li, Jin-long
    Li, Jia-hao
    Pang, Zhi-bo
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2022, 32 (04) : 1325 - 1335
  • [8] Selective Recovery of Lithium from Ternary Spent Lithium-Ion Batteries Using Sulfate Roasting-Water Leaching Process
    Chang Di
    Chen Yongming
    Xi Yan
    Chang Cong
    Jie Yafei
    Hu Fang
    ENERGY TECHNOLOGY 2020: RECYCLING, CARBON DIOXIDE MANAGEMENT, AND OTHER TECHNOLOGIES, 2020, : 387 - 395
  • [9] Selective Lithium Leaching from Spent Lithium-Ion Batteries via a Combination of Reduction Roasting and Mechanochemical Activation
    Zhang, Yu
    Guo, Jiangmin
    Yu, Meng
    Li, Xingrui
    Liu, Shaojun
    Song, Hao
    Wu, Weihong
    Zheng, Chenghang
    Gao, Xiang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (17) : 6629 - 6639
  • [10] Leaching valuable metals from spent lithium-ion batteries using the reducing agent methanol
    Lingyu Kong
    Zhaowen Wang
    Zhongning Shi
    Xianwei Hu
    Aimin Liu
    Wenju Tao
    Benping Wang
    Qian Wang
    Environmental Science and Pollution Research, 2023, 30 : 4258 - 4268