ON BINOMIAL COEFFICIENTS OF REAL ARGUMENTS

被引:0
|
作者
Fedoryaeva, T. I. [1 ]
机构
[1] Sobolev Inst Math, Pr Koptyuga 4, Novosibirsk 630090, Russia
关键词
factorial; binomial coefficient; gamma function; real binomial coefficient;
D O I
10.33048/semi.2023.20.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As is well-known, a generalization of the classical concept of the factorial n! for a real number x is an element of R is the value of Euler's gamma function Gamma(1 + x). In this connection, the notion of a binomial coefficient naturally arose for admissible values of the real arguments. We prove by elementary means a number of properties of binomial coefficients (r alpha) of real arguments r, alpha is an element of R such as analogs of unimodality, symmetry, Pascal's triangle, etc. for classical binomial coefficients. The asymptotic behavior of such generalized binomial coefficients of a special form is established.
引用
收藏
页码:514 / 523
页数:10
相关论文
共 50 条