A high-dimensional multinomial logit model

被引:0
|
作者
Nibbering, Didier [1 ]
机构
[1] Monash Univ, Dept Econometr & Business Stat, Clayton, Vic, Australia
关键词
Dirichlet process prior; high-dimensional models; large choice sets; multinomial logit model; BAYESIAN-INFERENCE; SELECTION; SHRINKAGE; TESTS;
D O I
10.1002/jae.3034
中图分类号
F [经济];
学科分类号
02 ;
摘要
The number of parameters in a standard multinomial logit model increases linearly with the number of choice alternatives and number of explanatory variables. Because many modern applications involve large choice sets with categorical explanatory variables, which enter the model as large sets of binary dummies, the number of parameters in a multinomial logit model is often large. This paper proposes a new method for data-driven two-way parameter clustering over outcome categories and explanatory dummy categories in a multinomial logit model. A Bayesian Dirichlet process mixture model encourages parameters to cluster over the categories, which reduces the number of unique model parameters and provides interpretable clusters of categories. In an empirical application, we estimate the holiday preferences of 11 household types over 49 holiday destinations and identify a small number of household segments with different preferences across clusters of holiday destinations.
引用
收藏
页码:481 / 497
页数:17
相关论文
共 50 条
  • [1] On the multinomial logit model
    Marsili, Matteo
    Physica A: Statistical Mechanics and its Applications, 1999, 269 (01): : 9 - 15
  • [2] On the multinomial logit model
    Marsili, M
    PHYSICA A, 1999, 269 (01): : 9 - 15
  • [3] High-dimensional genomic feature selection with the ordered stereotype logit model
    Seffernick, Anna Eames
    Mrozek, Krzysztof
    Nicolet, Deedra
    Stone, Richard M.
    Eisfeld, Ann-Kathrin
    Byrd, John C.
    Archer, Kellie J.
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
  • [4] THE NEGATIVE MULTINOMIAL LOGIT MODEL
    BONETT, DG
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (07) : 1713 - 1717
  • [5] Bayesian variable selection and model averaging in high-dimensional multinomial nonparametric regression
    Yau, P
    Kohn, R
    Wood, S
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (01) : 23 - 54
  • [6] Bayesian variable selection in multinomial probit model for classifying high-dimensional data
    Yang, Aijun
    Li, Yunxian
    Tang, Niansheng
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 399 - 418
  • [7] Bayesian variable selection in multinomial probit model for classifying high-dimensional data
    Aijun Yang
    Yunxian Li
    Niansheng Tang
    Jinguan Lin
    Computational Statistics, 2015, 30 : 399 - 418
  • [8] Testing the multinomial logit model
    Bartels, K
    Boztug, Y
    Müller, M
    CLASSIFICATION AND INFORMATION PROCESSING AT THE TURN OF THE MILLENNIUM, 2000, : 296 - 303
  • [9] Bayesian penalized cumulative logit model for high-dimensional data with an ordinal response
    Zhang, Yiran
    Archer, Kellie J.
    STATISTICS IN MEDICINE, 2021, 40 (06) : 1453 - 1481
  • [10] A Robust High-Dimensional Estimation of Multinomial Mixture Models
    Azam Sabbaghi
    Farzad Eskandari
    Hamid Reza Navabpoor
    Journal of Statistical Theory and Applications, 2021, 20 : 21 - 32