Orthonormal bases of extreme quantumness

被引:0
|
作者
Rudzinski, Marcin [1 ,2 ]
Burchardt, Adam [3 ,4 ]
Zyczkowski, Karol [1 ,5 ]
机构
[1] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, Ul Lojasiewicza 11, PL-30348 Krakow, Poland
[2] Jagiellonian Univ, Doctoral Sch Exact & Nat Sci, Ul Lojasiewicza 11, PL-30348 Krakow, Poland
[3] QuSoft, CWI, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[4] Univ Amsterdam, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[5] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
来源
QUANTUM | 2024年 / 8卷
关键词
ENTROPY CONJECTURE; SPIN STATES; PHASE; LOCALIZATION; LIMIT; PROOF;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spin anticoherent states acquired recently a lot of attention as the most "quantum" states. Some coherent and anticoherent spin states are known as optimal quantum rotosensors. In this work, we intro duce a measure of quantumness for orthonormal bases of spin states, determined by the average anticoherence of individual vectors and the Wehrl entropy. In this way, we identify the most coherent and most quantum states, which lead to orthogonal measurements of extreme quantumness. Their symmetries can be revealed using the Majorana stellar representation, which provides an intuitive geometrical representation of a pure state by points on a sphere. Results obtained lead to maximally (minimally) entangled bases in the 2j + 1 dimensional symmetric subspace of the 2(2j )dimensional space of states of multipartite systems composed of 2j qubits. Some bases found are isocoherent as they consist of all states of the same degree of spin-coherence.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] On orthonormal bases and translates
    Olevskii, Victor
    JOURNAL OF APPROXIMATION THEORY, 2016, 202 : 1 - 4
  • [2] Modified Wilson Orthonormal Bases
    Piotr Wojdyłło
    Sampling Theory in Signal and Image Processing, 2007, 6 (2): : 223 - 235
  • [3] SMOOTH LOCALIZED ORTHONORMAL BASES
    WICKERHAUSER, MV
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (05): : 423 - 427
  • [4] Orthonormal bases for α-modulation spaces
    Nielsen, Morten
    COLLECTANEA MATHEMATICA, 2010, 61 (02) : 173 - 190
  • [5] Orthonormal bases with nonlinear phases
    Qian, Tao
    Wang, Rui
    Xu, Yuesheng
    Zhang, Haizhang
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (01) : 75 - 95
  • [6] On subfactors with unitary orthonormal bases
    Ceccherini-Silberstein T.
    Journal of Mathematical Sciences, 2006, 137 (5) : 5137 - 5160
  • [7] Orthonormal bases with nonlinear phases
    Tao Qian
    Rui Wang
    Yuesheng Xu
    Haizhang Zhang
    Advances in Computational Mathematics, 2010, 33 : 75 - 95
  • [8] A note on Gabor orthonormal bases
    Li, YZ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (08) : 2419 - 2428
  • [9] Orthonormal bases for α-modulation spaces
    Morten Nielsen
    Collectanea mathematica, 2010, 61 : 173 - 190
  • [10] PERIODIC SPLINE ORTHONORMAL BASES
    KAMADA, M
    TORAICHI, K
    MORI, R
    JOURNAL OF APPROXIMATION THEORY, 1988, 55 (01) : 27 - 34