Permutation tests for multivariate order-constrained testing problems

被引:0
|
作者
Huang, Huiting [1 ]
Barzizza, Elena [2 ]
Ceccato, Riccardo [2 ,4 ]
Pesarin, Fortunato [3 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou, Peoples R China
[2] Univ Padua, Dept Management & Engn, Vicenza, Italy
[3] Univ Padua, Dept Stat Sci, Padua, Italy
[4] Univ Padua, Dept Management & Engn, I-36100 Vicenza, Italy
关键词
Monotonic stochastic ordering; Nonparametric combination; Stochastic dominance; Union-intersection; CONTINGENCY-TABLES; ALTERNATIVES; UNIVARIATE;
D O I
10.1080/03610918.2023.2251729
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article discusses an effective permutation-based approach to solve order-constrained testing problems, which are very difficult or even impossible to solve within the framework of parametric likelihood. The nonparametric combination (NPC) methodology is a flexible tool which relies on dependent permutation tests and allows us to deal with a large variety of complex testing problems, including the stochastic dominance and monotonic stochastic ordering problems of interest. To deal with them in line with Roy's Union-Intersection (UI) approach, the NPC procedure decomposes the original hypothesis into suitable sub-hypotheses. In this article we discuss and compare two possible types of decomposition, exploiting an extensive simulation study. A real data application is also proposed, in which multivariate ordinal data from the medical field are analyzed.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Evaluating order-constrained hypotheses for circular data using permutation tests
    Klugkist, Irene
    Bullens, Jessie
    Postma, Albert
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2012, 65 (02): : 222 - 236
  • [2] Bayes factors for testing order-constrained hypotheses on correlations
    Mulder, Joris
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2016, 72 : 104 - 115
  • [3] A SIMPLE APPROACH TO TESTING HOMOGENEITY OF ORDER-CONSTRAINED MEANS
    MCDERMOTT, MP
    MUDHOLKAR, GS
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (424) : 1371 - 1379
  • [4] Permutation tests for multivariate location problems
    Neuhaus, G
    Zhu, LX
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1999, 69 (02) : 167 - 192
  • [5] Testing Manifest Monotonicity Using Order-Constrained Statistical Inference
    Jesper Tijmstra
    David J. Hessen
    Peter G. M. van der Heijden
    Klaas Sijtsma
    [J]. Psychometrika, 2013, 78 : 83 - 97
  • [6] Testing Manifest Monotonicity Using Order-Constrained Statistical Inference
    Tijmstra, Jesper
    Hessen, David J.
    van der Heijden, Peter G. M.
    Sijtsma, Klaas
    [J]. PSYCHOMETRIKA, 2013, 78 (01) : 83 - 97
  • [7] Order-constrained linear optimization
    Tidwell, Joe W.
    Dougherty, Michael R.
    Chrabaszcz, Jeffrey S.
    Thomas, Rick P.
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2017, 70 (03): : 391 - 411
  • [8] On Order-Constrained Transitive Distance Clustering
    Yu, Zhiding
    Liu, Weiyang
    Liu, Wenbo
    Yang, Yingzhen
    Li, Ming
    Kumar, B. V. K. Vijaya
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2293 - 2299
  • [9] BIC Extensions for Order-constrained Model Selection
    Mulder, J.
    Raftery, A. E.
    [J]. SOCIOLOGICAL METHODS & RESEARCH, 2022, 51 (02) : 471 - 498
  • [10] Assignment Flow for Order-Constrained OCT Segmentation
    Sitenko, Dmitrij
    Boll, Bastian
    Schnoerr, Christoph
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (11) : 3088 - 3118