Graphical structures for design and verification of quantum error correction

被引:1
|
作者
Chancellor, Nicholas [1 ]
Kissinger, Aleks [2 ,3 ]
Zohren, Stefan [3 ]
Roffe, Joschka [1 ,4 ,5 ]
Horsman, Dominic [1 ,2 ]
机构
[1] Univ Durham, Dept Phys, Durham, England
[2] Univ Oxford, Dept Comp Sci, Oxford, England
[3] Univ Oxford, Dept Engn Sci, Oxford, England
[4] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, Berlin, Germany
[5] Univ Sheffield, Dept Phys & Astron, Sheffield, England
关键词
quantum computing; quantum error correction; ZX calculus; CODES;
D O I
10.1088/2058-9565/acf157
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a high-level graphical framework for designing and analysing quantum error correcting codes, centred on what we term the coherent parity check (CPC). The graphical formulation is based on the diagrammatic tools of the ZX-calculus of quantum observables. The resulting framework leads to a construction for stabilizer codes that allows us to design and verify a broad range of quantum codes based on classical ones, and that gives a means of discovering large classes of codes using both analytical and numerical methods. We focus in particular on the smaller codes that will be the first used by near-term devices. We show how CSS codes form a subset of CPC codes and, more generally, how to compute stabilizers for a CPC code. As an explicit example of this framework, we give a method for turning almost any pair of classical [n,k,3] codes into a [[2n-k+2,k,3]] CPC code. Further, we give a simple technique for machine search which yields thousands of potential codes, and demonstrate its operation for distance 3 and 5 codes. Finally, we use the graphical tools to demonstrate how Clifford computation can be performed within CPC codes. As our framework gives a new tool for constructing small- to medium-sized codes with relatively high code rates, it provides a new source for codes that could be suitable for emerging devices, while its ZX-calculus foundations enable natural integration of error correction with graphical compiler toolchains. It also provides a powerful framework for reasoning about all stabilizer quantum error correction codes of any size.
引用
收藏
页数:56
相关论文
共 50 条
  • [1] Error estimation, error correction and verification in quantum key distribution
    Maroy, Oystein
    Gudmundsen, Magne
    Lydersen, Lars
    Skaar, Johannes
    [J]. IET INFORMATION SECURITY, 2014, 8 (05) : 277 - 282
  • [2] Digital System Design for Quantum Error Correction Codes
    Khalifa, Othman O.
    Sharif, Nur Amirah bt
    Saeed, Rashid A.
    Abdel-Khalek, S.
    Alharbi, Abdulaziz N.
    Alkathiri, Ali A.
    [J]. CONTRAST MEDIA & MOLECULAR IMAGING, 2021, 2021
  • [3] Security verification of artificial neural networks used to error correction in quantum cryptography
    Niemiec, Marcin
    Mehic, Miralem
    Voznak, Miroslav
    [J]. 2018 26TH TELECOMMUNICATIONS FORUM (TELFOR), 2018, : 191 - 194
  • [4] Theoretical Design of Optimal Molecular Qudits for Quantum Error Correction
    Chiesa, A.
    Petiziol, F.
    Chizzini, M.
    Santini, P.
    Carretta, S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (28): : 6468 - 6474
  • [5] Design of nanophotonic circuits for autonomous subsystem quantum error correction
    Kerckhoff, J.
    Pavlichin, D. S.
    Chalabi, H.
    Mabuchi, H.
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [6] Quantum interleaver: Quantum error correction for burst error
    Kawabata, S
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (11) : 3540 - 3543
  • [7] Error correction based on verification techniques
    Huang, SY
    Chen, KC
    Cheng, KT
    [J]. 33RD DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 1996, 1996, : 258 - 261
  • [8] Formal Verification Guided Automatic Design Error Diagnosis and Correction of Complex Processors
    Gharehbaghi, Amir Masoud
    Fujita, Masahiro
    [J]. 2011 IEEE INTERNATIONAL HIGH LEVEL DESIGN VALIDATION AND TEST WORKSHOP (HLDVT), 2011, : 121 - 127
  • [9] Quantum error correction for quantum memories
    Terhal, Barbara M.
    [J]. REVIEWS OF MODERN PHYSICS, 2015, 87 (02) : 307 - 346
  • [10] Quantum Error Correction with Quantum Autoencoders
    Locher, David F.
    Cardarelli, Lorenzo
    Mueller, Markus
    [J]. QUANTUM, 2023, 7